Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jefferson County 2021 FEMA Flood Zone Areas
description: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where aPAilable. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). In addition to the preceding, required text, the Abstract should also describe the projection and coordinate system as well as a general statement about horizontal accuracy.; abstract: The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where aPAilable. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). In addition to the preceding, required text, the Abstract should also describe the projection and coordinate system as well as a general statement about horizontal accuracy.
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12000.
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the UTM projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:24,000.
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). In addition to the preceding, required text, the Abstract should also describe the projection and coordinate system as well as a general statement about horizontal accuracy.
The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual-chance flood event, and areas of minimal flood risk. The Floodplain Mapping/Redelineation flood risk boundaries are derived from the engineering information Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA).
This layer shows FEMA’s Flood Zones for Jefferson County, TX. The data was pulled from FEMA’s Preliminary FEMA Map Products and should be verified prior to final use. Contact Sean Murphy if you have any questions regarding this layer
North Carolina Effective Flood zones: In 2000, the Federal Emergency Management Agency (FEMA) designated North Carolina a Cooperating Technical Partner State, formalizing an agreement between FEMA and the State to modernize flood maps. This partnership resulted in creation of the North Carolina Floodplain Mapping Program (NCFMP). As a CTS, the State assumed primary ownership and responsibility of the Flood Insurance Rate Maps (FIRMs) for all North Carolina communities as part of the National Flood Insurance Program (NFIP). This project includes conducting flood hazard analyses and producing updated, Digital Flood Insurance Rate Maps (DFIRMs). Floodplain management is a process that aims to achieve reduced losses due to flooding. It takes on many forms, but is realized through a series of federal, state, and local programs and regulations, in concert with industry practice, to identify flood risk, implement methods to protect man-made development from flooding, and protect the natural and beneficial functions of floodplains. FIRMs are the primary tool for state and local governments to mitigate areas of flooding. Individual county databases can be downloaded from https://fris.nc.gov Updated Jan 17th, 2025.
The LOMA point layer indicates coordinates for Letters of Map Amendment, which can affect flood zone determination without a map change. Please be aware that LOMA point layer is provided ‘as-is’ and that there are several issues that must be considered before using this information. The first is its positional accuracy. Where the point is shown on the map may, or may not, be totally accurate as there are a variety of methods that can be used to translate a mailing address into a geographic coordinate (geocoding). The second is the completeness of the dataset. This point layer only includes LOMAs that have a coordinate associated with them. There are a number of LOMAs that have been processed by FEMA which do not have any type of a coordinate associated with them and those LOMAs are not included within this data.Technical Reference - http://www.fema.gov/media-library-data/1449862521789-e97ed4c7b7405faa7c3691603137ec40/FIRM_Database_Technical_Reference_Nov_2015.pdfFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.
Polygon layer of 1997 aerial photo models taken for the flood of 1997 during the river crest. Derived from flood mosaic index based on 9” x 9” contact prints. Spring 1997 aerial photography was acquired by Park Aerial Surveys under contract to LOJIC. Photo scale 1 inch = 660 feet.
The S_FIRM_Pan table contains information about the FIRM panel area. A spatial file with location information also corresponds with this data table. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information. The spatial entities representing FIRM panels are polygons. The polygon for the FIRM panel corresponds to the panel neatlines. Panel boundaries are generally derived from USGS DOQQ boundaries. As a result, the panels are generally rectangular. FIRM panels must not overlap or have gaps within a study. In situations where a portion of a panel lies outside the jurisdiction being mapped, the user must refer to the S_Pol_Ar table to determine the portion of the panel area where the FIRM Database shows the effective flood hazard data for the mapped jurisdiction. This information is needed for the FIRM Panel Index and the following tables in the FIS report: Listing of NFIP Jurisdictions, Levees, Incorporated Letters of Map Change, and Coastal Barrier Resources System Information.Flood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.
Normally, any FIRM that has associated flood profiles has cross sections. The S_XS table contains information about cross section lines. These lines usually represent the locations of channel surveys performed for input into the hydraulic model used to calculate flood elevations. Sometimes cross sections are interpolated between surveyed cross sections using high accuracy elevation data. Depending on the zone designation (Zone AE, Zone A, etc.), these locations may be shown on Flood Profiles in the FIS report and can be used to cross reference the Flood Profiles to the planimetric depiction of the flood hazards. This information is used in the Floodway Data Tables in the FIS report, as well as on the FIRM panels.Flood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy.The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found athttps://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs).The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.
Jefferson County Alabama composite of FEMA 2010, Shades Cahaba 2021 and Locust Fork 2019 data. Shades Cahaba and Locust Fork are adopted basin FEMA flood hazard area updated data sets. The County areas which fall outside of these latter two basin areas are covered in the exiting FEMA 2010 data set. All three of the datasets were normalized and merged into a new composite data set. All areas of the data which were coded as flood zone = X have been removed. Projection: NAD 83 State Plane Alabama West zone.
The S_LOMR feature class should contain at least one record for each Letter of Map Revision incorporated into the NFHL. Multipart polygons are not allowed. The spatial entities representing LOMRs are polygons. The spatial information contains the bounding polygon for each LOMR area, broken on panel boundaries.Technical Reference - http://www.fema.gov/media-library-data/1449862521789-e97ed4c7b7405faa7c3691603137ec40/FIRM_Database_Technical_Reference_Nov_2015.pdfFlood hazard and supporting data are developed using specifications for horizontal control consistent with 1:12,000–scale mapping. If you plan to display maps from the National Flood Hazard Layer with other map data for official purposes, ensure that the other information meets FEMA’s standards for map accuracy. The minimum horizontal positional accuracy for base map hydrographic and transportation features used with the NFHL is the NSSDA radial accuracy of 38 feet. USGS imagery and map services that meet this standard can be found by visiting the Knowledge Sharing Site (KSS) for Base Map Standards (420). Other base map standards can be found at https://riskmapportal.msc.fema.gov/kss/MapChanges/default.aspx. You will need a username and password to access this information.The NFHL data are from FEMA’s Flood Insurance Rate Map (FIRM) databases. New data are added continually. The NFHL also contains map changes to FIRM data made by Letters of Map Revision (LOMRs). The NFHL is stored in North American Datum of 1983, Geodetic Reference System 80 coordinate system, though many of the NFHL GIS web services support the Web Mercator Sphere projection commonly used in web mapping applications.
Flood models generated from LiDAR for the Jefferson City area. Heights are for river heights of 33 -37 feet.
FEMA Framework Basemap datasets comprise six of the seven FGDC themes of geospatial data that are used by most GIS applications (Note: the seventh framework theme, orthographic imagery, is packaged in a separate NFIP Metadata Profile): cadastral, geodetic control, governmental unit, transportation, general structures, hydrography (water areas & lines. These data include an encoding of the geographic extent of the features and a minimal number of attributes needed to identify and describe the features. (Source: Circular A16, p. 13)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The flood having a one percent chance of being equaled or exceeded in any given year. This is the regulatory standard also referred to as the "100-year flood." The base flood is the national standard used by the National Flood Insurance Program (NFIP) and all Federal agencies for the purposes of requiring the purchase of flood insurance and regulating new development. Base Flood Elevations (BFEs) are typically shown on Flood Insurance Rate Maps (FIRMs).
Digital flood-inundation maps for a 6.7-mile reach of Joachim Creek at De Soto, Missouri, were created by the U.S. Geological Survey (USGS) in cooperation with the city of De Soto, Missouri, and Jefferson County, Missouri. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 07019500 on Joachim Creek at De Soto, Missouri. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site. Flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model. The model was calibrated using current stage-discharge measurements at the USGS streamgage 07019500 on Joachim Creek at De Soto, Missouri, and documented high-water marks from the flood of April 18, 2013. The hydraulic model was then used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 8 ft, or near bankfull, to 17 ft, which exceeds the stage corresponding to the 0.2 percent annual exceedance probability flood (500-yr recurrence interval). The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar] data having a 1.0-ft vertical accuracy and 3.28-ft horizontal resolution) to delineate the area flooded at each water level. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post flood recovery efforts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project file containing the FEMA 2010 (current data) data sets which include Base Flood Elevation, Cross Sections, General Structures, FIRM Panels, Flood Hazard Areas and LOMR. Data is being served to ArcServer for publication in to Open Data on ArcGIS Online. Project file location: \gis-data\gis\library\ESRI\Services 1041\OpenData\FEMA.mxd
Hurricane Harvey made landfall near Rockport, Texas on August 25 as a category 4 hurricane with wind gusts exceeding 150 miles per hour. As Harvey moved inland the forward motion of the storm slowed down and produced tremendous rainfall amounts to southeastern Texas and southwestern Louisiana. Historic flooding occurred in Texas and Louisiana as a result of the widespread, heavy rainfall over an 8-day period in Louisiana in August and September 2017. Following the storm event, U.S. Geological Survey (USGS) hydrographers recovered and documented 2,123 high-water marks in Texas, noting location and height of the water above land surface. Many of these high-water marks were used to create flood-inundation maps for selected communities of Texas that experienced flooding in August and September, 2017. The mapped area boundary, flood inundation extents, and depth rasters were created to provide an estimated extent of flood inundation along the Neches River within counties of Orange, Jasper, Hardin, Jefferson, and Tyler, including the communities of Beaumont, Evadale, Port Neches, and Central Gardens, Texas. The mapped area of the Neches Basin was separated into two sections due to the availability and location of high-water marks. The upper reach of the Neches River extends from near the confluence with the Angelina River to the confluence of Black Creek in the Big Thicket National Preserve. The lower reach of the Neches River extends from the confluence of Black Creek in the Big Thicket National Preserve to Sabine Lake. These geospatial data include the following items: 1. bnd_neches_upper and bnd_neches_lower; shapefiles containing the polygon showing the mapped area boundary for the upper and lower Neches River flood maps, 2. hwm_neches_upper and hwm_neches_lower; shapefiles containing high-water mark points used for inundation maps, 3. polygon_neches_upper and polygon_neches_lower; shapefiles containing mapped extent of flood inundation for the upper and lower mapped sections of the Neches River, derived from the water-surface elevation surveyed at high-water marks, and 4. depth_upper and depth_lower; raster files for the flood depths derived from the water-surface elevation surveyed at high-water marks. The upstream and downstream mapped area extent is limited to the upstream-most and downstream-most high-water mark locations. In areas of uncertainty of flood extent, the mapped area boundary is lined up with the flood inundation polygon extent. The mapped area boundary polygon was used to extract the final flood inundation polygon and depth raster from the water-surface elevation raster file. Depth raster files were created using the "Topo to Raster" tool in ArcMap (ESRI, 2012). These data show the area of inundation within communities along the Neches River, Texas. The HWM elevation data from the USGS Short-tern Network (STN) was used to create the flood water-surface raster file (U.S. Geological Survey [USGS], 2018, Short-Term Network Data Portal: USGS flood information web page, accessed February 13, 2018, at https://water.usgs.gov/floods/FEV.). The water-surface raster was the basis for the creation of the final flood inundation polygon and depth layer to support the development of flood inundation map for the Federal Emergency Management Agency's (FEMA) response and recovery operations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jefferson County 2021 FEMA Flood Zone Areas