This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually
In 2023, the average wage and salary per full-time equivalent employee in the mining industry in the United States was at 126,707 U.S. dollars. The highest wage and salary per FTE was found in the information industry, at 164,400 U.S. dollars.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CEU0500000003) from Mar 2006 to Aug 2025 about average, earnings, hours, establishment survey, wages, private, employment, and USA.
As of 2023, the median wage for employees in healthcare support occupations was about 36,140 U.S. dollars. The occupational group with the highest annual median wage was management occupations. Mean wages for the same occupational groups can be accessed here.
The Occupational Employment and Wage Statistics (OEWS) survey is a semiannual mail survey of employers that measures occupational employment and occupational wage rates for wage and salary workers in nonfarm establishments, by industry. OEWS estimates are constructed from a sample of about 41,400 establishments. Each year, forms are mailed to two semiannual panels of approximately 6,900 sampled establishments, one panel in May and the other in November.
Average hourly and weekly wage rate, and median hourly and weekly wage rate by National Occupational Classification (NOC), type of work, gender, and age group.
Average hourly and weekly wage rate, and median hourly and weekly wage rate by North American Industry Classification System (NAICS), type of work, gender, and age group.
VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)
FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations
LAST UPDATED January 2019
DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.
DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html
American Community Survey (2001-2017) http://api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.
Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.
Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.
Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.
In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for 12-Month Moving Average of Unweighted Median Hourly Wage Growth: Job Switcher (FRBATLWGT12MMUMHWGJSW) from Dec 1997 to Aug 2025 about growth, moving average, 1-year, jobs, average, wages, median, and USA.
In 2023, the average wage and salary per full-time equivalent employee in the United States was at 81,359 U.S. dollars. Wage and salary accruals include executives' compensation, bonuses, tips, and payments-in-kind. Wage and salary accruals by industry data may be accessed here.
The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes
This statistic shows the average hourly wage in occupations that required a certain skill set in the United States from 1990 to 2015, by required skill. In 2015, U.S. Americans working in occupations that required a high level of analytical skills earned ** U.S. dollars per hour on average.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for 3-Month Moving Average of Unweighted Median Hourly Wage Growth: Job Movement: Job Stayer (FRBATLWGT3MMAUMHWGJMJST) from Mar 1997 to Aug 2025 about growth, moving average, jobs, 3-month, average, wages, median, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for 12-Month Moving Average of Unweighted Median Hourly Wage Growth: Job Stayer (FRBATLWGT12MMUMHWGJST) from Dec 1997 to Aug 2025 about growth, moving average, 1-year, jobs, average, wages, median, and USA.
In 2024, people working in IT management in the United States, earned an average annual salary worth around *** thousand U.S. dollars. Software developers and project managers all reported being paid on average over *** thousand U.S. dollars. Despite nearly all categories saw a year-on-year increase in annual compensation, IT support and help desk technicians saw a decrease compared to the previous year
In 2023, the average wage in private industry in Alabama was at 58,993 U.S. dollars. This was nearly half of the annual average wages per employee in the District of Columbia, at 112,048 U.S. dollars. That year, the District of Columbia, Massachusetts, and New York were the top ranked states in terms of average wages per employee.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over (LES1252881600Q) from Q1 1979 to Q2 2025 about full-time, salaries, workers, earnings, 16 years +, wages, median, employment, real, and USA.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The wages on the Job Bank website are specific to an occupation and provide information on the earnings of workers at the regional level. Wages for most occupations are also provided at the national and provincial level. In Canada, all jobs are associated with one specific occupational grouping which is determined by the National Occupational Classification. For most occupations, a minimum, median and maximum wage estimates are displayed. They are update annually. If you have comments or questions regarding the wage information, please contact the Labour Market Information Division at: NC-LMI-IMT-GD@hrsdc-rhdcc.gc.ca
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Occupational Employment and Wage Statistics (OEWS) Survey is a federal-state cooperative program between the Bureau of Labor Statistics (BLS) and State Workforce Agencies (SWAs). The BLS provides the procedures and technical support, draws the sample, and produces the survey materials, while the SWAs collect the data. SWAs from all fifty states, plus the District of Columbia, Puerto Rico, Guam, and the Virgin Islands participate in the survey. Occupational employment and wage rate estimates at the national level are produced by BLS using data from the fifty states and the District of Columbia. Employers who respond to states' requests to participate in the OEWS survey make these estimates possible.
The OEWS survey collects data from a sample of establishments and calculates employment and wage estimates by occupation, industry, and geographic area. The semiannual survey covers all non-farm industries. Data are collected by the Employment Development Department in cooperation with the Bureau of Labor Statistics, US Department of Labor. The OEWS Program estimates employment and wages for approximately 830 occupations. It also produces employment and wage estimates for statewide, Metropolitan Statistical Areas (MSAs), and Balance of State areas. Estimates are a snapshot in time and should not be used as a time series.
The OEWS estimates are published annually.
This statistic shows the average annual salary of employees in non-private enterprises and organizations in urban China in 2023, by region. In 2023, an employee in the urban regions of the Chinese Jiangsu province earned around 125,100 yuan per annum on average. The national average reached about 120,700 yuan that year. Aside from regional discrepancies, the respective industry had a large influence on the average annual salary of employees in urban China. Employees in the IT sector of China earned about 231,800 yuan on average, whereas people employed in the hotel and catering sector had an average annual salary of about 58,100 yuan in 2023.
This Dataset indicates average salary by position title and grade for full-time regular employees. Data excludes elected, appointed, non-merit and temporary employees. Underfilled positions are also excluded from the dataset. Update Frequency : Annually