53 datasets found
  1. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    csv, zip
    Updated Aug 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 20, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  2. j

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • systems.jhu.edu
    • github.com
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://systems.jhu.edu/research/public-health/ncov/
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  3. COVID-19 Data Repository by CSSE at JHU

    • console.cloud.google.com
    Updated May 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:Johns%20Hopkins%20University&inv=1&invt=Ab5-cQ (2021). COVID-19 Data Repository by CSSE at JHU [Dataset]. https://console.cloud.google.com/marketplace/product/johnshopkins/covid19_jhu_global_case
    Explore at:
    Dataset updated
    May 4, 2021
    Dataset provided by
    Googlehttp://google.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province/state. It was developed to enable researchers, public health authorities and the general public to track the outbreak. Additional information is available in the blog post, Mapping 2019-nCoV , and included data sources are listed here . For publications that use the data, please cite the following publication Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1" This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .This dataset has significant public interest in light of the COVID-19 crisis. All bytes processed in queries against this dataset will be zeroed out, making this part of the query free. Data joined with the dataset will be billed at the normal rate to prevent abuse. After September 15, queries over these datasets will revert to the normal billing rate.

  4. o

    Coronavirus COVID-19 global cases by Johns Hopkins CSSE

    • data.opendevelopmentmekong.net
    Updated Mar 5, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Coronavirus COVID-19 global cases by Johns Hopkins CSSE [Dataset]. https://data.opendevelopmentmekong.net/dataset/coronavirus-covid-19-global-cases-by-johns-hopkins
    Explore at:
    Dataset updated
    Mar 5, 2020
    Description

    This interactive web-based dashboard hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, to visualize and track reported cases in real-time. The dashboard, first shared publicly on 22nd January 2020, illustrates the location and number of confirmed Coronavirus COVID-19 cases, deaths and recoveries for all affected countries.

  5. JHU Coronavirus COVID-19 Global Cases, by country

    • kaggle.com
    zip
    Updated May 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). JHU Coronavirus COVID-19 Global Cases, by country [Dataset]. https://www.kaggle.com/bigquery/covid19-jhu-csse
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 18, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Overview

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post, Mapping 2019-nCoV (https://systems.jhu.edu/research/public-health/ncov/), and included data sources are listed here: https://github.com/CSSEGISandData/COVID-19

    Sample Query 1

    How many confirmed COVID-19 cases were there in the US, by state? This query determines the total number of cases by province in February. A "province_state" can refer to any subset of the US in this particular dataset, including a county or state. SELECT province_state, confirmed AS feb_confirmed_cases, FROM bigquery-public-data.covid19_jhu_csse.summary WHERE country_region = "US" AND date = '2020-02-29' ORDER BY feb_confirmed_cases desc

    Sample Query 2

    Which countries with the highest number of confirmed cases have the most per capita? This query joins the Johns Hopkins dataset with the World Bank's global population data to determine which countries among those with the highest total number of confirmed cases have the most confirmed cases per capita.

    with country_pop AS( SELECT IF(country = "United States","US",IF(country="Iran, Islamic Rep.","Iran",country)) AS country, year_2018 FROM bigquery-public-data.world_bank_global_population.population_by_country)

    SELECT cases.date AS date, cases.country_region AS country_region, SUM(cases.confirmed) AS total_confirmed_cases, SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region = "US" AND country_pop.country = "US" AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day) GROUP BY country_region, date

    UNION ALL

    SELECT cases.date AS date, cases.country_region AS country_region, SUM(cases.confirmed) AS total_confirmed_cases, SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region = "France" AND country_pop.country = "France" AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day) GROUP BY country_region, date

    UNION ALL

    SELECT cases.date AS date, cases.country_region AS country_region, SUM(cases.confirmed) AS total_confirmed_cases, SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region = "China" AND country_pop.country = "China" AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day)

    GROUP BY country_region, date

    UNION ALL

    SELECT cases.date AS date, cases.country_region AS country_region, cases.confirmed AS total_confirmed_cases, cases.confirmed/country_pop.year_2018 * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region IN ("Italy", "Spain", "Germany", "Iran") AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day) ORDER BY confirmed_cases_per_100000 desc

    Dataset source

    JHU CSSE

    Update frequency

    Daily

  6. COVID-19 Data Checking and Repairing (CDCAR)

    • figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guannan Wang; Zhiling Gu; Xinyi Li; Shan Yu; Myungjin Kim; Yueying Wang; Lei Gao; Lily Wang (2023). COVID-19 Data Checking and Repairing (CDCAR) [Dataset]. http://doi.org/10.6084/m9.figshare.12418550.v3
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Guannan Wang; Zhiling Gu; Xinyi Li; Shan Yu; Myungjin Kim; Yueying Wang; Lei Gao; Lily Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Over the past several months, the outbreak of COVID-19 has been expanding over the world. A reliable and accurate dataset of the cases is vital for scientists to conduct related research and for policy-makers to make better decisions. We collect the COVID-19 daily reported data from four open sources: the New York Times, the COVID-19 Data Repository by Johns Hopkins University, the COVID Tracking Project at the Atlantic, and the USAFacts, and compare the similarities and differences among them. In addition, we examine the following problems which occur frequently: (1) the order dependencies violation, (2) abnormal data point and/or period, and (3) the delay-reported issue on weekends and/or holidays. We also integrate the COVID-19 reported cases with the county-level auxiliary information of the local features from official sources, such as health infrastructure, demographic, socioeconomic, and environment information, which are essential for understanding the spread of the virus.

  7. JHU CSSE COVID-19 Data

    • kaggle.com
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony (2023). JHU CSSE COVID-19 Data [Dataset]. https://www.kaggle.com/datasets/anthonyylee/jhu-csse-covid-19-data/suggestions
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 10, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Anthony
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    Full dataset from Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE) GitHub repository.

    This is the full and complete dataset linked from JHU CSSE GitHub repository. The intent of this dataset is to provide access to the full dataset on the platform in contrast to the various other subsets.

    Since the original GitHub repository has been archived, there are no planned updates to this dataset.

    Citation

    All citation please cite according to specification in the GitHub repository README.

    Source

    COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University

    Reference

    Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1

  8. United States COVID-19 Tracker by Timmons Group

    • data.amerigeoss.org
    esri rest, html
    Updated Apr 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). United States COVID-19 Tracker by Timmons Group [Dataset]. https://data.amerigeoss.org/dataset/united-states-covid-19-tracker-by-timmons-group
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Apr 10, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Area covered
    United States
    Description

    The map data and summary statistics data are sourced from Johns Hopkins University and Esri’s Living Atlas. The charts are being sourced from a database created by Timmons Group GIS that leverages the temporal data provided by JHU on github.

    Why did we do this?

    1. The JHU dashboard is focused on Global and one can only drill down to a country-level for charting and summary statistics
    2. We wanted to create a US Centric dashboard that one could drill down to the State level and County level for charting and summary statistics

    How did we do this?

    The raw data from JHU does not support the temporal charting at the State level or County level, so we created a data pipeline to leverage JHU’s source data files and transforms their raw data into our data model

    Key features:

    1. The only US centric dashboard with State and County level temporal charts of COVID-19 data
    2. Ability to select multiple States or Counties and have maps and charts reflect the aggregate of those states/counties
    3. Truly responsive design web-app; our dashboard works on desktop/tablet/phone without the need for users to select multiple apps
    4. Ability to see the hardest impact States from the State table and exploring their associated charts
    5. Ability to see the hardest impacted counties by the County table and exploring their associated charts
    6. Ability to see the hardest impacted counties per State by selecting a State and exploring their associated charts

    Check out our other ArcGIS Dashboard powered by the new ArcGIS Experience Builder to explore the COVID-19 curves at the country level around the world - Explore the COVID-19 Curve

    For additional information, please contact:

  9. e

    Coronavirus COVID-19 Cases

    • coronavirus-resources.esri.com
    Updated Feb 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Coronavirus COVID-19 Cases [Dataset]. https://coronavirus-resources.esri.com/maps/bbb2e4f589ba40d692fab712ae37b9ac
    Explore at:
    Dataset updated
    Feb 6, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and the latest trend plot. It covers the US (county or state level), China, Canada, Australia (province/state level), and the rest of the world (country/region level, represented by either the country centroids or their capitals). Data sources are WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, the COVID Tracking Project (testing and hospitalizations), state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team, JHU APL and JHU Data Services. This layer is opened to the public and free to share. Contact us.

  10. COVID-19 Worldwide Daily Data

    • kaggle.com
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 28, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  11. s

    COVID-19 Pandemic - USA counties

    • data.smartidf.services
    • dashboardcovid.trial.opendatasoft.com
    • +2more
    csv, excel, geojson +1
    Updated Jul 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). COVID-19 Pandemic - USA counties [Dataset]. https://data.smartidf.services/explore/dataset/coronavirus-covid-19-pandemic-usa-counties/
    Explore at:
    geojson, excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 29, 2025
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This is the USA counties data extracted from the 2019 Coronavirus data hub operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Sources:1Point3Arces: https://coronavirus.1point3acres.com/enUS CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Enrichmentthe official FIPS codes are available and should be used for joins or geojoins needs.Terms of Use:This data set is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) by the Johns Hopkins University on behalf of its Center for Systems Science in Engineering. Copyright Johns Hopkins University 2020.Attribute the data as the "COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University" or "JHU CSSE COVID-19 Data" for short, and the url: https://github.com/CSSEGISandData/COVID-19.For publications that use the data, please cite the following publication: "Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1"

  12. COVID-19 Trends in Each Country

    • hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  13. COVID-19 by country

    • kaggle.com
    zip
    Updated Apr 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan Carlos Santiago Culebras (2020). COVID-19 by country [Dataset]. https://www.kaggle.com/jcsantiago/covid19-by-country-with-government-response
    Explore at:
    zip(237919 bytes)Available download formats
    Dataset updated
    Apr 23, 2020
    Authors
    Juan Carlos Santiago Culebras
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Context

    Within the current response of a pandemic caused by the SARS-CoV-2 coronavirus, which in turn causes the disease, called COVID-19. It is necessary to join forces to minimize the effects of this disease.

    Therefore, the intention of this dataset is to save data scientists time:

    • Gather the data at the country level, encoding the country with its ISO code to allow easy access to other data
    • Perform pre-processing of data, calculations of increments and other indicators that can facilitate modeling.
    • Add the response of the governments over time so that it can be taken into account in the modeling.
    • Daily update.

    This dataset is not intended to be static, so suggestions for expanding it are welcome. If someone considers it important to add information, please let me know.

    Content

    The data contained in this dataset comes mainly from the following sources:

    Source: Center for Systems Science and Engineering (CSSE) at Johns Hopkins University https://github.com/CSSEGISandData/COVID-19 Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): https://systems.jhu.edu/

    Source: OXFORD COVID-19 GOVERNMENT RESPONSE TRACKER https://www.bsg.ox.ac.uk/research/research-projects/oxford-covid-19-government-response-tracker Hale, Thomas and Samuel Webster (2020). Oxford COVID-19 Government Response Tracker. Data use policy: Creative Commons Attribution CC BY standard.

    The original data is updated daily.

    The features it includes are:

    • Country Name

    • Country Code ISO 3166 Alpha 3

    • Date

    • Incidence data:

      • confirmed
      • deaths
      • recoveries
    • Daily increments:

      • confirmed_inc
      • deaths_inc
      • recoveries_inc
    • Empirical Contagion Rate - ECR

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3508582%2F3e90ecbcdf76dfbbee54a21800f5e0d6%2FECR.jpg?generation=1586861653126435&alt=media" alt="">

    • GOVERNMENT RESPONSE TRACKER - GRTStringencyIndex

      OXFORD COVID-19 GOVERNMENT RESPONSE TRACKER - Stringency Index

    • Indices from Start Contagion

      • Days since the first case of contagion is overcome
      • Days since 100 cases are exceeded

    The method of obtaining the data and its transformations can be seen in the notebook:

    Notebook COVID-19 Data by country with Government Response

    Photo by Markus Spiske on Unsplash

  14. Coronavirus COVID-19 Global Cases

    • redivis.com
    application/jsonl +7
    Updated Jul 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Coronavirus COVID-19 Global Cases [Dataset]. http://doi.org/10.57761/pyf5-4e40
    Explore at:
    sas, csv, application/jsonl, spss, stata, parquet, arrow, avroAvailable download formats
    Dataset updated
    Jul 13, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 22, 2020 - Jul 12, 2020
    Description

    Abstract

    JHU Coronavirus COVID-19 Global Cases, by country

    Documentation

    PHS is updating the Coronavirus Global Cases dataset weekly, Monday, Wednesday and Friday from Cloud Marketplace.

    This data comes from the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths, and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post.

    Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    Section 2

    Included Data Sources are:

    %3C!-- --%3E

    Section 3

    **Terms of Use: **

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

    Section 4

    **U.S. county-level characteristics relevant to COVID-19 **

    Chin, Kahn, Krieger, Buckee, Balsari and Kiang (forthcoming) show that counties differ significantly in biological, demographic and socioeconomic factors that are associated with COVID-19 vulnerability. A range of publicly available county-specific data identifying these key factors, guided by international experiences and consideration of epidemiological parameters of importance, have been combined by the authors and are available for use:

    https://github.com/mkiang/county_preparedness/

  15. MONTANA RESPONSE: COVID-19 - Coronavirus - Global, National, and State...

    • data.amerigeoss.org
    esri rest, html
    Updated Jun 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). MONTANA RESPONSE: COVID-19 - Coronavirus - Global, National, and State Information Resources [Dataset]. https://data.amerigeoss.org/dataset/5c3058c2-af19-4653-8568-56b75f2873fe
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jun 18, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Area covered
    Montana
    Description

    A story map depicting crucial global, national, and state information resources for the COVID 19 - Coronavirus outbreak.

    1. Montana Situation Report - Daily report from the Montana State Emergency Coordination Center on the Montana Coronavirus (COVID-19) Executive Taskforce Situation Update
    2. Reported Event Info - Dashboard including
    3. Johns Hopkins GIS Dashboard - This tab is a geographic information systems (GIS) dashboard with maps, graphs, charts, of the Coronavirus/COVID-19 outbreak. Created and "hosted by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University, to visualize and track reported cases in real-time. The dashboard, first shared publicly on January 22, illustrates the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries. It was developed to provide researchers, public health authorities and the general public with a user-friendly tool to track the outbreak as it unfolds. Further, all the data collected and displayed is made freely available, initially as google sheets, now in a GitHub repository, along with the feature layers of the dashboard, which are now included in the ESRI Living Atlas."
    4. World Health Organization - Link to the World Health Organization’s (WHO) website on the Coronavirus (COVID 19).
    5. Center for Disease Control - Link to the Center of Disease Controls (CDC) Coronavirus Disease 2019 (COVID-19) in the U.S.
    6. Montana Department of Health & Human Resources - Link to the Montana Department of Public Health & Human Services Coronavirus Disease 2019 (COVID-19).
    7. Travel information from the CDC - Link to Center of Disease Controls (CDC) Coronavirus Disease 2019 Information for Travel.

  16. EPA Facilities Status Dashboard

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). EPA Facilities Status Dashboard [Dataset]. https://catalog.data.gov/dataset/epa-facilities-status-dashboard
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    A portion of the data used is publicly available through John Hopkins Coronavirus Resource Center and CDC COVID Data Tracker. Another portion data is password protected through HHS Protect. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: https://covid.cdc.gov/covid-data-tracker/#county-view and https://coronavirus.jhu.edu/map.html. For the data through HHS Protect, interested parties must submit a request to HHS. Format: Much of the data is publicly available at https://coronavirus.jhu.edu/map.html and https://covid.cdc.gov/covid-data-tracker/#county-view. What is not publicly available is through HHS Protect which is password protected. This dataset is associated with the following publication: Baxter, L., J. Baynes, A. Weaver, A. Neale, T. Wade, M. Mehaffey, D. Lobdell, K. Widener, and W. Cascio. Development of the United States Environmental Protection Agency’s Facilities Status Dashboard for the COVID-19 Pandemic: Approach and Challenges.. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 61(1604761): 9, (2022).

  17. d

    COVID-19 geovisualizations understanding survey

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rezk, Ahmed (2023). COVID-19 geovisualizations understanding survey [Dataset]. http://doi.org/10.7910/DVN/UBEYLR
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Rezk, Ahmed
    Description

    A survey conducted to assess users understanding of four COVID-19 geovisualizations. Map 1: Bing covid tracker Map 2: ECDC covid map Map 3: Johns Hopkins CSSE covid dashboard Map 4: WHO covid dashboard

  18. d

    The Marshall Project: COVID Cases in Prisons

    • data.world
    csv, zip
    Updated Apr 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2023). The Marshall Project: COVID Cases in Prisons [Dataset]. https://data.world/associatedpress/marshall-project-covid-cases-in-prisons
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Apr 6, 2023
    Authors
    The Associated Press
    Time period covered
    Jul 31, 2019 - Aug 1, 2021
    Description

    Overview

    The Marshall Project, the nonprofit investigative newsroom dedicated to the U.S. criminal justice system, has partnered with The Associated Press to compile data on the prevalence of COVID-19 infection in prisons across the country. The Associated Press is sharing this data as the most comprehensive current national source of COVID-19 outbreaks in state and federal prisons.

    Lawyers, criminal justice reform advocates and families of the incarcerated have worried about what was happening in prisons across the nation as coronavirus began to take hold in the communities outside. Data collected by The Marshall Project and AP shows that hundreds of thousands of prisoners, workers, correctional officers and staff have caught the illness as prisons became the center of some of the country’s largest outbreaks. And thousands of people — most of them incarcerated — have died.

    In December, as COVID-19 cases spiked across the U.S., the news organizations also shared cumulative rates of infection among prison populations, to better gauge the total effects of the pandemic on prison populations. The analysis found that by mid-December, one in five state and federal prisoners in the United States had tested positive for the coronavirus -- a rate more than four times higher than the general population.

    This data, which is updated weekly, is an effort to track how those people have been affected and where the crisis has hit the hardest.

    Methodology and Caveats

    The data tracks the number of COVID-19 tests administered to people incarcerated in all state and federal prisons, as well as the staff in those facilities. It is collected on a weekly basis by Marshall Project and AP reporters who contact each prison agency directly and verify published figures with officials.

    Each week, the reporters ask every prison agency for the total number of coronavirus tests administered to its staff members and prisoners, the cumulative number who tested positive among staff and prisoners, and the numbers of deaths for each group.

    The time series data is aggregated to the system level; there is one record for each prison agency on each date of collection. Not all departments could provide data for the exact date requested, and the data indicates the date for the figures.

    To estimate the rate of infection among prisoners, we collected population data for each prison system before the pandemic, roughly in mid-March, in April, June, July, August, September and October. Beginning the week of July 28, we updated all prisoner population numbers, reflecting the number of incarcerated adults in state or federal prisons. Prior to that, population figures may have included additional populations, such as prisoners housed in other facilities, which were not captured in our COVID-19 data. In states with unified prison and jail systems, we include both detainees awaiting trial and sentenced prisoners.

    To estimate the rate of infection among prison employees, we collected staffing numbers for each system. Where current data was not publicly available, we acquired other numbers through our reporting, including calling agencies or from state budget documents. In six states, we were unable to find recent staffing figures: Alaska, Hawaii, Kentucky, Maryland, Montana, Utah.

    To calculate the cumulative COVID-19 impact on prisoner and prison worker populations, we aggregated prisoner and staff COVID case and death data up through Dec. 15. Because population snapshots do not account for movement in and out of prisons since March, and because many systems have significantly slowed the number of new people being sent to prison, it’s difficult to estimate the total number of people who have been held in a state system since March. To be conservative, we calculated our rates of infection using the largest prisoner population snapshots we had during this time period.

    As with all COVID-19 data, our understanding of the spread and impact of the virus is limited by the availability of testing. Epidemiology and public health experts say that aside from a few states that have recently begun aggressively testing in prisons, it is likely that there are more cases of COVID-19 circulating undetected in facilities. Sixteen prison systems, including the Federal Bureau of Prisons, would not release information about how many prisoners they are testing.

    Corrections departments in Indiana, Kansas, Montana, North Dakota and Wisconsin report coronavirus testing and case data for juvenile facilities; West Virginia reports figures for juvenile facilities and jails. For consistency of comparison with other state prison systems, we removed those facilities from our data that had been included prior to July 28. For these states we have also removed staff data. Similarly, Pennsylvania’s coronavirus data includes testing and cases for those who have been released on parole. We removed these tests and cases for prisoners from the data prior to July 28. The staff cases remain.

    About the Data

    There are four tables in this data:

    • covid_prison_cases.csv contains weekly time series data on tests, infections and deaths in prisons. The first dates in the table are on March 26. Any questions that a prison agency could not or would not answer are left blank.

    • prison_populations.csv contains snapshots of the population of people incarcerated in each of these prison systems for whom data on COVID testing and cases are available. This varies by state and may not always be the entire number of people incarcerated in each system. In some states, it may include other populations, such as those on parole or held in state-run jails. This data is primarily for use in calculating rates of testing and infection, and we would not recommend using these numbers to compare the change in how many people are being held in each prison system.

    • staff_populations.csv contains a one-time, recent snapshot of the headcount of workers for each prison agency, collected as close to April 15 as possible.

    • covid_prison_rates.csv contains the rates of cases and deaths for prisoners. There is one row for every state and federal prison system and an additional row with the National totals.

    Queries

    The Associated Press and The Marshall Project have created several queries to help you use this data:

    Get your state's prison COVID data: Provides each week's data from just your state and calculates a cases-per-100000-prisoners rate, a deaths-per-100000-prisoners rate, a cases-per-100000-workers rate and a deaths-per-100000-workers rate here

    Rank all systems' most recent data by cases per 100,000 prisoners here

    Find what percentage of your state's total cases and deaths -- as reported by Johns Hopkins University -- occurred within the prison system here

    Attribution

    In stories, attribute this data to: “According to an analysis of state prison cases by The Marshall Project, a nonprofit investigative newsroom dedicated to the U.S. criminal justice system, and The Associated Press.”

    Contributors

    Many reporters and editors at The Marshall Project and The Associated Press contributed to this data, including: Katie Park, Tom Meagher, Weihua Li, Gabe Isman, Cary Aspinwall, Keri Blakinger, Jake Bleiberg, Andrew R. Calderón, Maurice Chammah, Andrew DeMillo, Eli Hager, Jamiles Lartey, Claudia Lauer, Nicole Lewis, Humera Lodhi, Colleen Long, Joseph Neff, Michelle Pitcher, Alysia Santo, Beth Schwartzapfel, Damini Sharma, Colleen Slevin, Christie Thompson, Abbie VanSickle, Adria Watson, Andrew Welsh-Huggins.

    Questions

    If you have questions about the data, please email The Marshall Project at info+covidtracker@themarshallproject.org or file a Github issue.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  19. Mission statement of the Johns Hopkins Lyme and Tickborne disease dashboard....

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frank C. Curriero; Cara Wychgram; Alison W. Rebman; Anne E. Corrigan; Anton Kvit; Timothy Shields; John N. Aucott (2023). Mission statement of the Johns Hopkins Lyme and Tickborne disease dashboard. [Dataset]. http://doi.org/10.1371/journal.pone.0260122.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Frank C. Curriero; Cara Wychgram; Alison W. Rebman; Anne E. Corrigan; Anton Kvit; Timothy Shields; John N. Aucott
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Mission statement of the Johns Hopkins Lyme and Tickborne disease dashboard.

  20. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker

Johns Hopkins COVID-19 Case Tracker

Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000

Explore at:
12 scholarly articles cite this dataset (View in Google Scholar)
zip, csvAvailable download formats
Dataset updated
Aug 20, 2025
Authors
The Associated Press
Time period covered
Jan 22, 2020 - Mar 9, 2023
Area covered
Description

Updates

  • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

  • April 9, 2020

    • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
  • April 20, 2020

    • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
  • April 29, 2020

    • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
  • September 1st, 2020

    • Johns Hopkins is now providing counts for the five New York City counties individually.
  • February 12, 2021

    • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
    • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
  • February 16, 2021

    - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

    Overview

The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

The AP is updating this dataset hourly at 45 minutes past the hour.

To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

Queries

Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

Interactive

The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

@(https://datawrapper.dwcdn.net/nRyaf/15/)

Interactive Embed Code

<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>

Caveats

  • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
  • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
  • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
  • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
  • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
  • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
  • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

Attribution

This data should be credited to Johns Hopkins University COVID-19 tracking project

Search
Clear search
Close search
Google apps
Main menu