100+ datasets found
  1. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  2. g

    Coronavirus COVID-19 Global Cases by the Center for Systems Science and...

    • github.com
    • systems.jhu.edu
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE), Coronavirus COVID-19 Global Cases by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU) [Dataset]. https://github.com/CSSEGISandData/COVID-19
    Explore at:
    Dataset provided by
    Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE)
    Area covered
    Global
    Description

    2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
    https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    • Confirmed Cases by Country/Region/Sovereignty
    • Confirmed Cases by Province/State/Dependency
    • Deaths
    • Recovered

    Downloadable data:
    https://github.com/CSSEGISandData/COVID-19

    Additional Information about the Visual Dashboard:
    https://systems.jhu.edu/research/public-health/ncov

  3. John Hopkins Covid 19 Case Tracker Dataset

    • kaggle.com
    zip
    Updated Jan 11, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CodeBreaker619 (2021). John Hopkins Covid 19 Case Tracker Dataset [Dataset]. https://www.kaggle.com/codebreaker619/john-hopkins-covid-19-case-tracker-dataset
    Explore at:
    zip(14625123 bytes)Available download formats
    Dataset updated
    Jan 11, 2021
    Authors
    CodeBreaker619
    Description

    Content

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    Acknowledgements

    John Hopkins University The Associated Press

  4. COVID-19 Trends in Each Country

    • coronavirus-disasterresponse.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Mar 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  5. COVID-19 Worldwide Daily Data

    • kaggle.com
    zip
    Updated Aug 28, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 Worldwide Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19
    Explore at:
    zip(469881 bytes)Available download formats
    Dataset updated
    Aug 28, 2020
    Authors
    Altadata
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 Worldwide Daily Data

    Daily global COVID-19 data for all countries, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the update version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical global daily data on the COVID-19 pandemic for all countries.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • Country Population represents 2019 projections by UN Population Division, integrated to the JHU CSSE's COVID-19 data by ALTADATA

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date) : Covid-19 Report Date
    • Country_Region (country_region) : Country, region or sovereignty name
    • Population (population) : Country populations as per United Nations Population Division
    • Confirmed Case (confirmed) : Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active) : Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths) : Death cases counts
    • Recovered (recovered) : Recovered cases counts
    • Mortality Rate (mortality_rate) : Number of recorded deaths * 100 / Number of confirmed cases
    • Incident Rate (incident_rate) : Confirmed cases per 100,000 persons
  6. e

    Cases country

    • coronavirus-resources.esri.com
    • share-open-data-covid-19-date-format-issue-ess.hub.arcgis.com
    • +1more
    Updated Feb 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Cases country [Dataset]. https://coronavirus-resources.esri.com/datasets/bbb2e4f589ba40d692fab712ae37b9ac
    Explore at:
    Dataset updated
    Feb 6, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and the latest trend plot. It covers the US (county or state level), China, Canada, Australia (province/state level), and the rest of the world (country/region level, represented by either the country centroids or their capitals). Data sources are WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, the COVID Tracking Project (testing and hospitalizations), state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team, JHU APL and JHU Data Services. This layer is opened to the public and free to share. Contact us.

  7. JHU CSSE COVID-19 Data

    • kaggle.com
    zip
    Updated Oct 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony (2023). JHU CSSE COVID-19 Data [Dataset]. https://www.kaggle.com/datasets/anthonyylee/jhu-csse-covid-19-data
    Explore at:
    zip(377698378 bytes)Available download formats
    Dataset updated
    Oct 10, 2023
    Authors
    Anthony
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    Full dataset from Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE) GitHub repository.

    This is the full and complete dataset linked from JHU CSSE GitHub repository. The intent of this dataset is to provide access to the full dataset on the platform in contrast to the various other subsets.

    Since the original GitHub repository has been archived, there are no planned updates to this dataset.

    Citation

    All citation please cite according to specification in the GitHub repository README.

    Source

    COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University

    Reference

    Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1

  8. JHU Coronavirus COVID-19 Global Cases, by country

    • kaggle.com
    zip
    Updated May 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google BigQuery (2020). JHU Coronavirus COVID-19 Global Cases, by country [Dataset]. https://www.kaggle.com/bigquery/covid19-jhu-csse
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    May 18, 2020
    Dataset provided by
    BigQueryhttps://cloud.google.com/bigquery
    Authors
    Google BigQuery
    Description

    Overview

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). This database was created in response to the Coronavirus public health emergency to track reported cases in real-time. The data include the location and number of confirmed COVID-19 cases, deaths and recoveries for all affected countries, aggregated at the appropriate province or state. It was developed to enable researchers, public health authorities and the general public to track the outbreak as it unfolds. Additional information is available in the blog post, Mapping 2019-nCoV (https://systems.jhu.edu/research/public-health/ncov/), and included data sources are listed here: https://github.com/CSSEGISandData/COVID-19

    Sample Query 1

    How many confirmed COVID-19 cases were there in the US, by state? This query determines the total number of cases by province in February. A "province_state" can refer to any subset of the US in this particular dataset, including a county or state. SELECT province_state, confirmed AS feb_confirmed_cases, FROM bigquery-public-data.covid19_jhu_csse.summary WHERE country_region = "US" AND date = '2020-02-29' ORDER BY feb_confirmed_cases desc

    Sample Query 2

    Which countries with the highest number of confirmed cases have the most per capita? This query joins the Johns Hopkins dataset with the World Bank's global population data to determine which countries among those with the highest total number of confirmed cases have the most confirmed cases per capita.

    with country_pop AS( SELECT IF(country = "United States","US",IF(country="Iran, Islamic Rep.","Iran",country)) AS country, year_2018 FROM bigquery-public-data.world_bank_global_population.population_by_country)

    SELECT cases.date AS date, cases.country_region AS country_region, SUM(cases.confirmed) AS total_confirmed_cases, SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region = "US" AND country_pop.country = "US" AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day) GROUP BY country_region, date

    UNION ALL

    SELECT cases.date AS date, cases.country_region AS country_region, SUM(cases.confirmed) AS total_confirmed_cases, SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region = "France" AND country_pop.country = "France" AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day) GROUP BY country_region, date

    UNION ALL

    SELECT cases.date AS date, cases.country_region AS country_region, SUM(cases.confirmed) AS total_confirmed_cases, SUM(cases.confirmed)/AVG(country_pop.year_2018) * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region = "China" AND country_pop.country = "China" AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day)

    GROUP BY country_region, date

    UNION ALL

    SELECT cases.date AS date, cases.country_region AS country_region, cases.confirmed AS total_confirmed_cases, cases.confirmed/country_pop.year_2018 * 100000 AS confirmed_cases_per_100000 FROM bigquery-public-data.covid19_jhu_csse.summary cases JOIN country_pop ON cases.country_region LIKE CONCAT('%',country_pop.country,'%') WHERE cases.country_region IN ("Italy", "Spain", "Germany", "Iran") AND cases.date = DATE_SUB(current_date(),INTERVAL 1 day) ORDER BY confirmed_cases_per_100000 desc

    Dataset source

    JHU CSSE

    Update frequency

    Daily

  9. o

    COVID-19 Pandemic - USA counties

    • dashboardcovid.trial.opendatasoft.com
    csv, excel, geojson +1
    Updated Apr 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). COVID-19 Pandemic - USA counties [Dataset]. https://dashboardcovid.trial.opendatasoft.com/explore/dataset/covid-19-pandemic-usa-counties/
    Explore at:
    csv, excel, json, geojsonAvailable download formats
    Dataset updated
    Apr 3, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This is the USA counties data extracted from the 2019 Coronavirus data hub operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).Sources:1Point3Arces: https://coronavirus.1point3acres.com/enUS CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Enrichmentthe official FIPS codes are available and should be used for joins or geojoins needs.Terms of Use:This data set is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) by the Johns Hopkins University on behalf of its Center for Systems Science in Engineering. Copyright Johns Hopkins University 2020.Attribute the data as the "COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University" or "JHU CSSE COVID-19 Data" for short, and the url: https://github.com/CSSEGISandData/COVID-19.For publications that use the data, please cite the following publication: "Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Inf Dis. 20(5):533-534. doi: 10.1016/S1473-3099(20)30120-1"

  10. COVID_19_CSSEGISandData

    • kaggle.com
    zip
    Updated Mar 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nuzul Muhammad Ramadhan (2022). COVID_19_CSSEGISandData [Dataset]. https://www.kaggle.com/datasets/newzoel/covid-19-cssegisanddata
    Explore at:
    zip(301140837 bytes)Available download formats
    Dataset updated
    Mar 15, 2022
    Authors
    Nuzul Muhammad Ramadhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).

    Data Source

    Terms of Use

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

  11. COVID-19

    • kaggle.com
    zip
    Updated Mar 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sreejith Nair (2020). COVID-19 [Dataset]. https://www.kaggle.com/sreejith20988/covid19
    Explore at:
    zip(833202 bytes)Available download formats
    Dataset updated
    Mar 29, 2020
    Authors
    Sreejith Nair
    Description

    I continue to work on improving this Dataset and will upload as soon as I have an improved version of it. I don't own this dataset, I have merely tried to enrich the data that is gathered from multiple sources by John Hopkins CSSE.

    Context

    COVID-19 is perhaps the biggest historical event of our lifetime with the kind of destruction and disruption it has already caused to the people around the world. I wanted to build a dashboard summarizing the events from beginning to date and that's the reason I worked on combining all the daily reports into one file.

    Content

    This file consists of incidents reported from across the world Jan 22 onwards. Incidents are categorized into Confirmed, Deaths and Recovered. Country/Region and/or Province/State information is available. Geo-coordinates are available but these are missing for countries like China

    Acknowledgements

    This data belongs to John Hopkins CSSE which they gathered from multiple sources. Below is from JHU Github account, please read before using the dataset.

    This is the data repository for the 2019 Novel Coronavirus Visual Dashboard operated by the Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE). Also, Supported by ESRI Living Atlas Team and the Johns Hopkins University Applied Physics Lab (JHU APL).

    Visual Dashboard (desktop): https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    Visual Dashboard (mobile): http://www.arcgis.com/apps/opsdashboard/index.html#/85320e2ea5424dfaaa75ae62e5c06e61

    Lancet Article: An interactive web-based dashboard to track COVID-19 in real time

    Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): https://systems.jhu.edu/

    Data Sources:

    World Health Organization (WHO): https://www.who.int/ DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia. BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/ National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html Macau Government: https://www.ssm.gov.mo/portal/ Taiwan CDC: https://sites.google.com/cdc.gov.tw/2019ncov/taiwan?authuser=0 US CDC: https://www.cdc.gov/coronavirus/2019-ncov/index.html Government of Canada: https://www.canada.ca/en/public-health/services/diseases/coronavirus.html Australia Government Department of Health: https://www.health.gov.au/news/coronavirus-update-at-a-glance European Centre for Disease Prevention and Control (ECDC): https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases Ministry of Health Singapore (MOH): https://www.moh.gov.sg/covid-19 Italy Ministry of Health: http://www.salute.gov.it/nuovocoronavirus 1Point3Arces: https://coronavirus.1point3acres.com/en WorldoMeters: https://www.worldometers.info/coronavirus/

    Additional Information about the Visual Dashboard: https://systems.jhu.edu/research/public-health/ncov/

    Contact Us:

    Email: jhusystems@gmail.com

    Terms of Use:

    This GitHub repo and its contents herein, including all data, mapping, and analysis, copyright 2020 Johns Hopkins University, all rights reserved, is provided to the public strictly for educational and academic research purposes. The Website relies upon publicly available data from multiple sources, that do not always agree. The Johns Hopkins University hereby disclaims any and all representations and warranties with respect to the Website, including accuracy, fitness for use, and merchantability. Reliance on the Website for medical guidance or use of the Website in commerce is strictly prohibited.

    Inspiration

    COVID-19 is perhaps the biggest historical event of our lifetime with the kind of destruction and disruption it has already caused to the people around the world. I wanted to build a dashboard summarizing the events from beginning to date and that's the reason I worked on combining all the daily reports into one file.

  12. H

    COVID-19 geovisualizations understanding survey

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Jan 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Rezk (2022). COVID-19 geovisualizations understanding survey [Dataset]. http://doi.org/10.7910/DVN/UBEYLR
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 1, 2022
    Dataset provided by
    Harvard Dataverse
    Authors
    Ahmed Rezk
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    A survey conducted to assess users understanding of four COVID-19 geovisualizations. Map 1: Bing covid tracker Map 2: ECDC covid map Map 3: Johns Hopkins CSSE covid dashboard Map 4: WHO covid dashboard

  13. EPA Facilities Status Dashboard

    • s.cnmilf.com
    • gimi9.com
    • +1more
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2024). EPA Facilities Status Dashboard [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/epa-facilities-status-dashboard
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    A portion of the data used is publicly available through John Hopkins Coronavirus Resource Center and CDC COVID Data Tracker. Another portion data is password protected through HHS Protect. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: https://covid.cdc.gov/covid-data-tracker/#county-view and https://coronavirus.jhu.edu/map.html. For the data through HHS Protect, interested parties must submit a request to HHS. Format: Much of the data is publicly available at https://coronavirus.jhu.edu/map.html and https://covid.cdc.gov/covid-data-tracker/#county-view. What is not publicly available is through HHS Protect which is password protected. This dataset is associated with the following publication: Baxter, L., J. Baynes, A. Weaver, A. Neale, T. Wade, M. Mehaffey, D. Lobdell, K. Widener, and W. Cascio. Development of the United States Environmental Protection Agency’s Facilities Status Dashboard for the COVID-19 Pandemic: Approach and Challenges.. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 61(1604761): 9, (2022).

  14. y

    Hungary Coronavirus Cases

    • ycharts.com
    html
    Updated Mar 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins Center for Systems Science and Engineering (2023). Hungary Coronavirus Cases [Dataset]. https://ycharts.com/indicators/hungary_coronavirus_cases
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    YCharts
    Authors
    Johns Hopkins Center for Systems Science and Engineering
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Hungary
    Variables measured
    Hungary Coronavirus Cases
    Description

    View daily updates and historical trends for Hungary Coronavirus Cases. Source: Johns Hopkins Center for Systems Science and Engineering. Track economic d…

  15. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  16. COVID-19 Data Lake

    • registry.opendata.aws
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amazon Web Services (2020). COVID-19 Data Lake [Dataset]. https://registry.opendata.aws/aws-covid19-lake/
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset provided by
    Amazon Web Serviceshttp://aws.amazon.com/
    Description

    A centralized repository of up-to-date and curated datasets on or related to the spread and characteristics of the novel corona virus (SARS-CoV-2) and its associated illness, COVID-19. Globally, there are several efforts underway to gather this data, and we are working with partners to make this crucial data freely available and keep it up-to-date. Hosted on the AWS cloud, we have seeded our curated data lake with COVID-19 case tracking data from Johns Hopkins and The New York Times, hospital bed availability from Definitive Healthcare, and over 45,000 research articles about COVID-19 and related coronaviruses from the Allen Institute for AI.

  17. a

    Coronavirus COVID-19 Cases

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Feb 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CSSE_covid19 (2020). Coronavirus COVID-19 Cases [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/maps/bbb2e4f589ba40d692fab712ae37b9ac
    Explore at:
    Dataset updated
    Feb 6, 2020
    Dataset authored and provided by
    CSSE_covid19
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources:Global: World Health Organization (WHO)U.S.: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.This feature layer contains the most up-to-date COVID-19 cases and the latest trend plot. It covers the US (county or state level), China, Canada, Australia (province/state level), and the rest of the world (country/region level, represented by either the country centroids or their capitals). Data sources are WHO, CDC, ECDC, NHC, DXY, 1point3acres, Worldometers.info, BNO, the COVID Tracking Project (testing and hospitalizations), state and national government health departments, and local media reports. This layer is created and maintained by the Center for Systems Science and Engineering (CSSE) at the Johns Hopkins University. This feature layer is supported by Esri Living Atlas team, JHU APL and JHU Data Services. This layer is opened to the public and free to share. Contact us.

  18. y

    Poland Coronavirus Cases

    • ycharts.com
    html
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins Center for Systems Science and Engineering (2023). Poland Coronavirus Cases [Dataset]. https://ycharts.com/indicators/poland_coronavirus_cases
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    YCharts
    Authors
    Johns Hopkins Center for Systems Science and Engineering
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Poland
    Variables measured
    Poland Coronavirus Cases
    Description

    View daily updates and historical trends for Poland Coronavirus Cases. Source: Johns Hopkins Center for Systems Science and Engineering. Track economic da…

  19. d

    LA County COVID Cases

    • catalog.data.gov
    • data.lacity.org
    • +1more
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.lacity.org (2025). LA County COVID Cases [Dataset]. https://catalog.data.gov/dataset/la-county-covid-cases
    Explore at:
    Dataset updated
    Nov 15, 2025
    Dataset provided by
    data.lacity.org
    Area covered
    Los Angeles County
    Description

    COVID cases and deaths for LA County and California State. Updated daily. Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.

  20. COVID-19 US Daily Data

    • kaggle.com
    zip
    Updated Sep 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Altadata (2020). COVID-19 US Daily Data [Dataset]. https://www.kaggle.com/altadata/covid19us
    Explore at:
    zip(232018 bytes)Available download formats
    Dataset updated
    Sep 2, 2020
    Authors
    Altadata
    Area covered
    United States
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">

    ALTADATA is a curated data marketplace where our subscribers and our data partners can easily exchange ready-to-analyze datasets and create insights with EPO, our visual data analytics platform.

    COVID-19 US Daily Data

    State level daily COVID-19 data for United States, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the updated version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.

    Overview

    In this data product, you may find the latest and historical daily data on the COVID-19 pandemic for United States with the states level breakdown.

    The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.

    The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.

    Methodology

    • Cases and Death counts include confirmed and probable (where reported)
    • Recovered cases are estimates based on local media reports, and state and local reporting when available, and therefore may be substantially lower than the true number. US state-level recovered cases are from COVID Tracking Project.
    • Active cases = total cases - total recovered - total deaths
    • Incidence Rate = cases per 100,000 persons
    • Case-Fatality Ratio (%) = Number recorded deaths / Number cases
    • US Testing Rate = total test results per 100,000 persons. The "total test results" are equal to "Total test results (Positive + Negative)" from COVID Tracking Project.
    • US Hospitalization Rate (%) = Total number hospitalized / Number cases. The "Total number hospitalized" is the "Hospitalized – Cumulative" count from COVID Tracking Project. The "hospitalization rate" and "Total number hospitalized" are only presented for those states which provide cumulative hospital data.
    • States Population data is retrieved from U.S. Census Bureau on top of the JHU CSSE's COVID-19 data

    Data Source

    Related Data Products

    Suggested Blog Posts

    Data Dictionary

    • Reported Date (reported_date): Covid-19 Report Date
    • Province State (province_state): State name
    • Population (population): Estimated state populations as of July 2019, as per U.S. Census Bureau Population Division
    • Latitude (lat): Dot locations, not representative of a specific address
    • Longitude (lng): Dot locations longitude, not representative of a specific address
    • Confirmed Case (confirmed): Confirmed cases include presumptive positive cases and probable cases
    • Active cases (active): Active cases = total confirmed - total recovered - total deaths
    • Deaths (deaths): Death cases counts
    • Recovered (recovered): Recovered cases counts
    • Hospitalization Rate (hospitalization_rate): Total number of people hospitalized * 100...
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker

Johns Hopkins COVID-19 Case Tracker

Johns Hopkins' county-level COVID-19 case and death data, paired with population and rates per 100,000

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
zip, csvAvailable download formats
Dataset updated
Dec 3, 2025
Authors
The Associated Press
Time period covered
Jan 22, 2020 - Mar 9, 2023
Area covered
Description

Updates

  • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

  • April 9, 2020

    • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
  • April 20, 2020

    • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
  • April 29, 2020

    • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
  • September 1st, 2020

    • Johns Hopkins is now providing counts for the five New York City counties individually.
  • February 12, 2021

    • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
    • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
  • February 16, 2021

    - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

    Overview

The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

The AP is updating this dataset hourly at 45 minutes past the hour.

To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

Queries

Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

Interactive

The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

@(https://datawrapper.dwcdn.net/nRyaf/15/)

Interactive Embed Code

<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>

Caveats

  • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
  • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
  • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
  • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
  • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
  • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
  • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

Attribution

This data should be credited to Johns Hopkins University COVID-19 tracking project

Search
Clear search
Close search
Google apps
Main menu