This dataset is one of several segments of a regional high detailed stream flowpath dataset. The data was separated using the TOPO 50 map series extents.The stream network was originally created for the purpose of high detailed work along rivers and streams in the Wellington region. It was started as a pilot study for the Mangatarere subcatchment of the Waiohine River for the Environmental Sciences department who was attempting to measure riparian vegetation. The data was sourced from a modelled stream network created using the 2013 LiDAR digital elevation model. Once the Mangatarere was complete the process was expanded to cover the entire region on an as needed basis for each whaitua. This dataset is one of several that shows the finished stream datasets for the Wairarapa region.The base stream network was created using a mixture of tools found in ArcGIS Spatial Analyst under Hydrology along with processes located in the Arc Hydro downloadable add-on for ArcGIS. The initial workflow for the data was based on the information derived from the help files provided at the Esri ArcGIS 10.1 online help files. The updated process uses the core Spatial Analyst tools to generate the streamlines while digital dams are corrected using the DEM Reconditioning tool provided by the Arc Hydro toolset. The whaitua were too large for processing separated into smaller units according to the subcatchments within it. In select cases like the Taueru subcatchment of the Ruamahanga these subcatchments need to be further defined to allow processing. The catchment boundaries available are not as precise as the LiDAR information which causes overland flows that are on edges of the catchments to become disjointed from each other and required manual correction.Attributes were added to the stream network using the River Environment Classification (REC) stream network from NIWA. The Spatial Join tool in Arcmap was used to add the Reach ID to each segment of the generated flow path. This ID was used to join a table which had been created by intersecting stream names (generated from a point feature class available from LINZ) with the REC subcatchment dataset. Both of the REC datasets are available from NIWA's website.
This ArcGIS model inserts a file name into a feature class attribute table. The tool allows an user to identify features by a field that reference the name of the original file. It is useful when an user have to merge multiple feature classes and needs to identify which layer the features come from.
The Census of Agriculture, produced by the United States Department of Agriculture (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2022, and provides an in-depth look at the agricultural industry.This layer was produced from data obtained from the USDA National Agriculture Statistics Service (NASS) Large Datasets download page. The data were transformed and prepared for publishing using the Pivot Table geoprocessing tool in ArcGIS Pro and joined to county boundaries. The county boundaries are 2022 vintage and come from Living Atlas ACS 2022 feature layers.Dataset SummaryPhenomenon Mapped: 2022 Grain ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiSource: USDA National Agricultural Statistics ServicePublication Date: 2022AttributesNote that some values are suppressed as "Withheld to avoid disclosing data for individual operations", "Not applicable", or "Less than half the rounding unit". These have been coded in the data as -999, -888, and -777 respectively.Grain - Operations With SalesGrain - Sales, Measured In US Dollars ($)Grain, Other - Operations With SalesGrain, Other - Sales, Measured In US Dollars ($) In Alaska, one or more county-equivalent entities (borough, census area, city, municipality) are included in an agriculture census area.
This dataset is one of several segments of a regional high detailed stream flowpath dataset. The data was separated using the TOPO 50 map series extents.The stream network was originally created for the purpose of high detailed work along rivers and streams in the Wellington region. It was started as a pilot study for the Mangatarere subcatchment of the Waiohine River for the Environmental Sciences department who was attempting to measure riparian vegetation. The data was sourced from a modelled stream network created using the 2013 LiDAR digital elevation model. Once the Mangatarere was complete the process was expanded to cover the entire region on an as needed basis for each whaitua. This dataset is one of several that shows the finished stream datasets for the Wairarapa region.The base stream network was created using a mixture of tools found in ArcGIS Spatial Analyst under Hydrology along with processes located in the Arc Hydro downloadable add-on for ArcGIS. The initial workflow for the data was based on the information derived from the help files provided at the Esri ArcGIS 10.1 online help files. The updated process uses the core Spatial Analyst tools to generate the streamlines while digital dams are corrected using the DEM Reconditioning tool provided by the Arc Hydro toolset. The whaitua were too large for processing separated into smaller units according to the subcatchments within it. In select cases like the Taueru subcatchment of the Ruamahanga these subcatchments need to be further defined to allow processing. The catchment boundaries available are not as precise as the LiDAR information which causes overland flows that are on edges of the catchments to become disjointed from each other and required manual correction.Attributes were added to the stream network using the River Environment Classification (REC) stream network from NIWA. The Spatial Join tool in Arcmap was used to add the Reach ID to each segment of the generated flow path. This ID was used to join a table which had been created by intersecting stream names (generated from a point feature class available from LINZ) with the REC subcatchment dataset. Both of the REC datasets are available from NIWA's website.
This dataset is one of several segments of a regional high detailed stream flowpath dataset. The data was separated using the TOPO 50 map series extents.The stream network was originally created for the purpose of high detailed work along rivers and streams in the Wellington region. It was started as a pilot study for the Mangatarere subcatchment of the Waiohine River for the Environmental Sciences department who was attempting to measure riparian vegetation. The data was sourced from a modelled stream network created using the 2013 LiDAR digital elevation model. Once the Mangatarere was complete the process was expanded to cover the entire region on an as needed basis for each whaitua. This dataset is one of several that shows the finished stream datasets for the Wairarapa region.The base stream network was created using a mixture of tools found in ArcGIS Spatial Analyst under Hydrology along with processes located in the Arc Hydro downloadable add-on for ArcGIS. The initial workflow for the data was based on the information derived from the help files provided at the Esri ArcGIS 10.1 online help files. The updated process uses the core Spatial Analyst tools to generate the streamlines while digital dams are corrected using the DEM Reconditioning tool provided by the Arc Hydro toolset. The whaitua were too large for processing separated into smaller units according to the subcatchments within it. In select cases like the Taueru subcatchment of the Ruamahanga these subcatchments need to be further defined to allow processing. The catchment boundaries available are not as precise as the LiDAR information which causes overland flows that are on edges of the catchments to become disjointed from each other and required manual correction.Attributes were added to the stream network using the River Environment Classification (REC) stream network from NIWA. The Spatial Join tool in Arcmap was used to add the Reach ID to each segment of the generated flow path. This ID was used to join a table which had been created by intersecting stream names (generated from a point feature class available from LINZ) with the REC subcatchment dataset. Both of the REC datasets are available from NIWA's website.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes farm and ranch sales plus the number and value of machines and trucks owned by operators from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: Farm and Ranch Sales, Machinery and Truck inventory and ValueCoordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Number of Operations - AnimalsSales in US Dollars - AnimalsNumber of Operations - CropsSales in US Dollars - CropsTotal Value in US Dollars - MachineryTractors - InventoryTrucks Including Pickups - InventoryAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
What is GIS? Many of the decisions we make every day involve being able to access, understand and utilise the space around us. This type of information is referred to as spatial information, and when visualised, we can see relationships, patterns, and trends that may not otherwise be apparent. A Geographic Information System (GIS) is mapping software that provides spatial information by linking locations with information about that location. It provides the functions and tools needed to efficiently capture, store, manipulate, analyse, and display the information about places and things. The key components of a GIS are: - Tools for entering and manipulating geographic information such as addresses, political boundaries, geological features and building information - A database management system (DBMS) - Tools that create intelligent digital maps you can analyse, query for more information, or print for presentation - An easy-to-use graphical user interface (GUI)
Parcels and property data maintained and provided by Lee County Property Appraiser are converted to points. Property attribute data joined to parcel GIS layer by Lee County Government GIS. This dataset is generally used in spatial analysis.Process description: Parcel polygons, condominium points and property data provided by the Lee County Property Appraiser are processed by Lee County's GIS Department using the following steps:Join property data to parcel polygons Join property data to condo pointsConvert parcel polygons to points using ESRI's ArcGIS tool "Feature to Point" and designate the "Source" field "P".Load Condominium points into this layer and designate the "Source" field "C". Add X/Y coordinates in Florida State Plane West, NAD 83, feet using the "Add X/Y" tool.Projected coordinate system name: NAD_1983_StatePlane_Florida_West_FIPS_0902_FeetGeographic coordinate system name: GCS_North_American_1983
Name
Type
Length
Description
STRAP
String
25
17-digit Property ID (Section, Township, Range, Area, Block, Lot)
BLOCK
String
10
5-digit portion of STRAP (positions 9-13)
LOT
String
8
Last 4-digits of STRAP
FOLIOID
Double
8
Unique Property ID
MAINTDATE
Date
8
Date LeePA staff updated record
MAINTWHO
String
20
LeePA staff who updated record
UPDATED
Date
8
Data compilation date
HIDE_STRAP
String
1
Confidential parcel ownership
TRSPARCEL
String
17
Parcel ID sorted by Township, Range & Section
DORCODE
String
2
Department of Revenue. See https://leepa.org/Docs/Codes/DOR_Code_List.pdf
CONDOTYPE
String
1
Type of condominium: C (commercial) or R (residential)
UNITOFMEAS
String
2
Type of Unit of Measure (ex: AC=acre, LT=lot, FF=frontage in feet)
NUMUNITS
Double
8
Number of Land Units (units defined in UNITOFMEAS)
FRONTAGE
Integer
4
Road Frontage in Feet
DEPTH
Integer
4
Property Depth in Feet
GISACRES
Double
8
Total Computed Acres from GIS
TAXINGDIST
String
3
Taxing District of Property
TAXDISTDES
String
60
Taxing District Description
FIREDIST
String
3
Fire District of Property
FIREDISTDE
String
60
Fire District Description
ZONING
String
10
Zoning of Property
ZONINGAREA
String
3
Governing Area for Zoning
LANDUSECOD
SmallInteger
2
Land Use Code
LANDUSEDES
String
60
Land Use Description
LANDISON
String
5
BAY,CANAL,CREEK,GULF,LAKE,RIVER & GOLF
SITEADDR
String
55
Lee County Addressing/E911
SITENUMBER
String
10
Property Location - Street Number
SITESTREET
String
40
Street Name
SITEUNIT
String
5
Unit Number
SITECITY
String
20
City
SITEZIP
String
5
Zip Code
JUST
Double
8
Market Value
ASSESSED
Double
8
Building Value + Land Value
TAXABLE
Double
8
Taxable Value
LAND
Double
8
Land Value
BUILDING
Double
8
Building Value
LXFV
Double
8
Land Extra Feature Value
BXFV
Double
8
Building Extra Feature value
NEWBUILT
Double
8
New Construction Value
AGAMOUNT
Double
8
Agriculture Exemption Value
DISAMOUNT
Double
8
Disability Exemption Value
HISTAMOUNT
Double
8
Historical Exemption Value
HSTDAMOUNT
Double
8
Homestead Exemption Value
SNRAMOUNT
Double
8
Senior Exemption Value
WHLYAMOUNT
Double
8
Wholly Exemption Value
WIDAMOUNT
Double
8
Widow Exemption Value
WIDRAMOUNT
Double
8
Widower Exemption Value
BLDGCOUNT
SmallInteger
2
Total Number of Buildings on Parcel
MINBUILTY
SmallInteger
2
Oldest Building Built
MAXBUILTY
SmallInteger
2
Newest Building Built
TOTALAREA
Double
8
Total Building Area
HEATEDAREA
Double
8
Total Heated Area
MAXSTORIES
Double
8
Tallest Building on Parcel
BEDROOMS
Integer
4
Total Number of Bedrooms
BATHROOMS
Double
8
Total Number of Bathrooms / Not For Comm
GARAGE
String
1
Garage on Property 'Y'
CARPORT
String
1
Carport on Property 'Y'
POOL
String
1
Pool on Property 'Y'
BOATDOCK
String
1
Boat Dock on Property 'Y'
SEAWALL
String
1
Sea Wall on Property 'Y'
NBLDGCOUNT
SmallInteger
2
Total Number of New Buildings on ParcelTotal Number of New Buildings on Parcel
NMINBUILTY
SmallInteger
2
Oldest New Building Built
NMAXBUILTY
SmallInteger
2
Newest New Building Built
NTOTALAREA
Double
8
Total New Building Area
NHEATEDARE
Double
8
Total New Heated Area
NMAXSTORIE
Double
8
Tallest New Building on Parcel
NBEDROOMS
Integer
4
Total Number of New Bedrooms
NBATHROOMS
Double
8
Total Number of New Bathrooms/Not For Comm
NGARAGE
String
1
New Garage on Property 'Y'
NCARPORT
String
1
New Carport on Property 'Y'
NPOOL
String
1
New Pool on Property 'Y'
NBOATDOCK
String
1
New Boat Dock on Property 'Y'
NSEAWALL
String
1
New Sea Wall on Property 'Y'
O_NAME
String
30
Owner Name
O_OTHERS
String
120
Other Owners
O_CAREOF
String
30
In Care Of Line
O_ADDR1
String
30
Owner Mailing Address Line 1
O_ADDR2
String
30
Owner Mailing Address Line 2
O_CITY
String
30
Owner Mailing City
O_STATE
String
2
Owner Mailing State
O_ZIP
String
9
Owner Mailing Zip
O_COUNTRY
String
30
Owner Mailing Country
S_1DATE
Date
8
Most Current Sale Date > $100.00
S_1AMOUNT
Double
8
Sale Amount
S_1VI
String
1
Sale Vacant or Improved
S_1TC
String
2
Sale Transaction Code
S_1TOC
String
2
Sale Transaction Override Code
S_1OR_NUM
String
13
Original Record (Lee County Clerk)
S_2DATE
Date
8
Previous Sale Date > $100.00
S_2AMOUNT
Double
8
Sale Amount
S_2VI
String
1
Sale Vacant or Improved
S_2TC
String
2
Sale Transaction Code
S_2TOC
String
2
Sale Transaction Override Code
S_2OR_NUM
String
13
Original Record (Lee County Clerk)
S_3DATE
Date
8
Next Previous Sale Date > $100.00
S_3AMOUNT
Double
8
Sale Amount
S_3VI
String
1
Sale Vacant or Improved
S_3TC
String
2
Sale Transaction Code
S_3TOC
String
2
Sale Transaction Override Code
S_3OR_NUM
String
13
Original Record (Lee County Clerk)
S_4DATE
Date
8
Next Previous Sale Date > $100.00
S_4AMOUNT
Double
8
Sale Amount
S_4VI
String
1
Sale Vacant or Improved
S_4TC
String
2
Sale Transaction Code
S_4TOC
String
2
Sale Transaction Override Code
S_4OR_NUM
String
13
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cotton production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cotton ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BalesSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
This layer shows Household Pulse Survey data on gender identity and sexual orientation. Gender identity is the internal perception of gender, and how one identifies based on how one aligns or doesn’t align with cultural options for gender. This is a different concept than sex assigned at birth. Sexual orientation is the type of sexual attraction one has the capacity to feel for others, generally labeled based on the gender relationship between the person and the people they are attracted to. This is not the same as sexual behavior or preference.Learn more about how the Census Bureau survey measures sexual orientation and gender identity. This page includes nation-wide characteristics such as age, Hispanic origin and race, and educational attainment. Also read some of their findings about experiences during the COVID-19 pandemic, such as lesbian, gay, bisexual, or transgender (LGBT) adults experiencing higher rates of both economic hardship and mental health hardship. See the questionnaire used in phase 3.2 of the Household Pulse Survey.Source: Household Pulse Survey Data Tables. Data values in this layer are from Week 34 (July 21 - August 2, 2021), the first week that gender identity and sexual orientation questions were part of this survey. Top 15 metros are based on total population and are the same 15 metros available for all Household Pulse Data Tables.This layer is symbolized to show the percent of adults who are lesbian, gay, bisexual, or transgender (LGBT) as well as adults whose gender or sexual orientation was not listed on the survey (LGBTQIA+). The color of the symbol depicts the percentage and the size of the symbol depicts the count. *Percent calculations do not use those who did not report either their gender or sexual orientation in either the numerator or denominator, consistent with methodology used by the source.*Data Prep Steps:Data prep used Table 1 (Child Tax Credit Payment Status and Use, by Select Characteristics) to perform tabular data transformation. SAS to Table conversion tool was used to bring the tables into ArcGIS Pro.The data is joined to 2019 TIGER boundaries from the U.S. Census Bureau.Using the counties in each metro according to the Metropolitan and Micropolitan Statistical Area Reference Files, metro boundaries created via Merge and Dissolve tools in ArcGIS Pro.In preparing the field aliases and long descriptions, "none of these" and "something else" were generally modified to "not listed."
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes payments made to producers by the Federal government from the 2017 Census of Agriculture at the county level. This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online.Dataset SummaryPhenomenon Mapped: Payments made to producers by the Federal government Coordinate System: Web Mercator Auxiliary SphereExtent: United States including Hawaii and AlaskaVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Federal Payments - Operations with ReceiptsFederal Payments - Receipts in US DollarsFederal Payments - Receipts in US Dollars per OperationFederal Payments not Including Conservation and Wetland Programs - Operations with ReceiptsFederal Payments not Including Conservation and Wetland Programs - Receipts in US DollarsFederal Payments not Including Conservation and Wetland Programs - Receipts in US Dollars per OperationFederal Payments for Conservation and Wetland Programs - Operations with ReceiptsFederal Payments for Conservation and Wetland Programs - Receipts in US DollarsFederal Payments for Conservation and Wetland Programs - Receipts in US Dollars per OperationConservation and wetland programs include:Conservation Reserve Program (CRP)Wetlands Reserve Program (WRP)Farmable Wetlands Program (FWP)Conservation Reserve Enhancement Program (CREP)Other programs with payments to producers include:2014 Agricultural Act (Farm Bill)Agriculture Risk Coverage (ARC)Price Loss Coverage (PLC)Commodity Credit Corporation (CCC)Loan Deficiency PaymentsDisaster Assistance ProgramsState and local government agricultural program payments and Federal crop insurance payments are not included.Additionally, attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
The Geoscience Australia’s Semi-automated Morphological Mapping Tools (GA-SaMMT) were developed as ArcGIS Pro Python tools using Python 3+ to map ten bathymetric high and eight bathymetric low Morphology Features (defined in Dove et al., 2020; cf. Nanson et al., 2023). These tools comprise seven toolboxes: 1. The BathymetricHigh.pyt toolbox is used to map bathymetric high features, and includes three tools: (i) TPI Tool Bathymetric High; (ii) TPI LMI Tool Bathymetric High; (iii) and Openness Tool Bathymetric High. 2. The BathymetricLow.pyt toolbox is used to map bathymetric low features, and includes three tools: (i) TPI Tool Bathymetric Low; (ii) TPI CI Tool Bathymetric Low; and (iii) Openness Tool Bathymetric Low. 3. The AddAttributes.pyt toolbox is used to calculate attributes for bathymetric high and low features, and includes six tools: (i) Add Shape Attributes High Tool; (ii) Add Shape Attributes Low Tool; (iii) Add Topographic Attributes High Tool; (iv) Add Topographic Attributes Low Tool; (v) Add Profile Attributes High Tool; and (vi) Add Profile Attributes Low Tool. 4. The AddAttributesFast.pyt toolbox is also used to calculate attributes for bathymetric high and low features, and has the advantage (over the AddAttributes.pyt toolbox) of having multiprocessing capabilities. This version of the add attributes toolbox contains four tools: (i) Add Shape Attributes High Tool Fast; (ii) Add Shape Attributes Low Tool Fast; (iii) Add Profile Attributes High Tool Fast; and (iv) Add Profile Attributes Low Tool Fast. The two add topographic attributes tools do not require multiprocessing capabilities to improve their performance. 5. The ClassificationFeature.pyt toolbox is used to classify bathymetric high and low features into Morphological Feature categories defined in Dove et al. (2020), and includes two tools: (i) Classify Bathymetric High Features; and (ii) Classify Bathymetric Low Features. 6. The Accessory_Tools.pyt toolbox provides four accessory tools to help the mapping processes: (i) Merge Connected Features Tool; (ii) Connect Nearby Linear Features Tool; (iii) Connect Nearby Linear HF Features Tool; and (iv) Update Feature Boundary Tool. 7. The Surface.pyt toolbox is used to map three classes of Morphological surfaces (Dove et al., 2020), and includes two tools: (i) Morphological Surface Tool Bathymetry; and (ii) Morphological Surface Tool Slope. The system and data format requirements of these ArcGIS tools are described in the tutorials and user guide that accompany the tools, which also include sampled data and step-by-step examples of their application. Further details of these tools, including their description, graphic illustrations and usages, and python code examples, are also available in their metadata. These tools have been applied to many study areas with real world applications, including those published in Huang et al. (2023) which should be used as the key reference to the GA-SaMMT. Dove, D., Nanson, R., Bjarnadóttir, L., Guinan, J., Gafeira, J., Post, A., Dolan, M.; Stewart, H.; Arosio, R, Scott, G. (October, 2020). A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. Zenodo. http://doi.org/10.5281/zenodo.4075248 Nanson, R., Arosio, R., Gafeira, J., McNeil, M., Dove, D., Bjarnadóttir, L., Dolan, M., Guinan, J., Post, A., Webb, J., & Nichol, S. (2023). A two-part seabed geomorphology classification scheme; Part 2: Geomorphology classification framework and glossary (Version 1.0) (1.0). Zenodo. https://doi.org/10.5281/zenodo.7804019 Huang, Z., Nanson, R., McNeil, M., Wenderlich, M., Gafeira, J., Post, A, Nichol, S., 2023. Rule-based semi-automated tools for mapping seabed morphology from bathymetry data, Frontiers in Marine Science, 10, 1236788.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes winter wheat production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Winter Wheat ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedProduction in BushelsIrrigated Area Harvested in AcresAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Additional information on wheat from the Census of Agriculture is available in the USDA Census of Agriculture 2017 - Wheat Production layer.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes wheat production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Wheat ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United StatesVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Area Harvested in AcresOperations with Area HarvestedOperations with SalesProduction in BushelsSales in US DollarsIrrigated Area Harvested in AcresOperations with Irrigated Area HarvestedAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.Many other ready-to-use layers derived from the Census of Agriculture can be found in the Living Atlas Agriculture of the USA group.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
The Census of Agriculture, produced by the USDA National Agricultural Statistics Service (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2017, and provides an in-depth look at the agricultural industry.This layer summarizes cattle production from the 2017 Census of Agriculture at the county level.This layer was produced from data downloaded using the USDA's QuickStats Application. The data was transformed using the Pivot Table tool in ArcGIS Pro and joined to the county boundary file provided by the USDA. The layer was published as feature layer in ArcGIS Online. Dataset SummaryPhenomenon Mapped: 2017 Cattle ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiVisible Scale: All ScalesSource: USDA National Agricultural Statistics Service QuickStats ApplicationPublication Date: 2017AttributesThis layer provides values for the following attributes. Note that some values are not disclosed (coded as -1 in the layer) to protect the privacy of producers in areas with limited production.Cattle - Operations with SalesCattle - Sales in US DollarsCattle - Sales in HeadDairy - Operations with SalesDairy - Sales in US DollarsAdditionally attributes of State Name, State Code, County Name and County Code are included to facilitate cartography and use with other layers.What can you do with this layer?This layer can be used throughout the ArcGIS system. Feature layers can be used just like any other vector layer. You can use feature layers as an input to geoprocessing tools in ArcGIS Pro or in Analysis in ArcGIS Online. Combine the layer with others in a map and set custom symbology or create a pop-up tailored for your users. For the details of working with feature layers the help documentation for ArcGIS Pro or the help documentation for ArcGIS Online are great places to start. The ArcGIS Blog is a great source of ideas for things you can do with feature layers. This layer is part of ArcGIS Living Atlas of the World that provides an easy way to find and explore many other beautiful and authoritative layers, maps, and applications on hundreds of topics.
The Census of Agriculture, produced by the United States Department of Agriculture (USDA), provides a complete count of America's farms, ranches and the people who grow our food. The census is conducted every five years, most recently in 2022, and provides an in-depth look at the agricultural industry.This layer was produced from data obtained from the USDA National Agriculture Statistics Service (NASS) Large Datasets download page. The data were transformed and prepared for publishing using the Pivot Table geoprocessing tool in ArcGIS Pro and joined to county boundaries. The county boundaries are 2022 vintage and come from Living Atlas ACS 2022 feature layers.Dataset SummaryPhenomenon Mapped: 2022 Soybean ProductionCoordinate System: Web Mercator Auxiliary SphereExtent: 48 Contiguous United States, Alaska, and HawaiiSource: USDA National Agricultural Statistics ServicePublication Date: 2022AttributesNote that some values are suppressed as "Withheld to avoid disclosing data for individual operations", "Not applicable", or "Less than half the rounding unit". These have been coded in the data as -999, -888, and -777 respectively.Soybeans - Acres HarvestedSoybeans - Operations With Area Harvested - Area Harvested: (1.0 To 24.9 Acres)Soybeans - Operations With Area Harvested - Area Harvested: (25.0 To 99.9 Acres)Soybeans - Operations With Area Harvested - Area Harvested: (100 To 249 Acres)Soybeans - Operations With Area Harvested - Area Harvested: (250 To 499 Acres)Soybeans - Operations With Area Harvested - Area Harvested: (500 To 999 Acres)Soybeans - Operations With Area Harvested - Area Harvested: (1,000 Or More Acres)Soybeans - Operations With Area HarvestedSoybeans - Operations With SalesSoybeans - Production, Measured In BushelsSoybeans - Sales, Measured In US DollarsSoybeans, Irrigated - Acres HarvestedSoybeans, Irrigated - Operations With Area Harvested In Alaska, one or more county-equivalent entities (borough, census area, city, municipality) are included in an agriculture census area.
This feature service contains COVID-19 data automatically updated from the Public Health England (PHE) API service, daily. Using this API, this service takes the current day request minus two days. Therefore the data will always be two days behind. This is a result of the delay between PHE's specimen date and reporting date.The Polygon Layers, which all contain spatial data, provide information about the latest cumulative figures at three geographies; Local Authority, Regions and Nations. The Tables, which are not spatially aware, provide historical data for each feature. The format of these tables allow you to use the Join tool with the Polygon Layers and create a time enabled layer. This can be used within a dashboard or on the animation tool to view patterns over time.
This layer shows the countries of Africa. You can click on the map to get info on each country, including its name and flag, as well as links to detailed information in The World Factbook and UN Human Development Reports.The Africa Countries layer was created by joining country population data from The World Factbook to the World Countries (Generalized) layer, using ArcGIS Online analysis tools. The popup for the map uses Arcade expressions to reference other online resources based on the country code for the selected country.The Flags of countries are provided by reference to Flagpedia, which provides flags of countries of the world and the U.S. states for display and download.
The bathymetry raster with a resolution of 5 m x 5 m was processed from unpublished single beam data from the Argentine Antarctica Institute (IAA, 2010) and multibeam data from the United Kingdom Hydrographic Office (UKHO, 2012) with a cell size of 5 m x 5 m. A coastline digitized from a satellite image (DigitalGlobe, 2014) supplemented the interpolation process. The 'Topo to Raster' tool in ArcMap 10.3 was used to merge the three data sets, while the coastline represented the 0-m-contour to the interpolation process ('contour type option'). Subproject: JE 680/1-1
This collection of files are part of a larger dataset uploaded in support of Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin (GPFA-AB, DOE Project DE-EE0006726). Phase 1 of the GPFA-AB project identified potential Geothermal Play Fairways within the Appalachian basin of Pennsylvania, West Virginia and New York. This was accomplished through analysis of 4 key criteria: thermal quality, natural reservoir productivity, risk of seismicity, and heat utilization. Each of these analyses represent a distinct project task, with the fifth task encompassing combination of the 4 risks factors. Supporting data for all five tasks has been uploaded into the Geothermal Data Repository node of the National Geothermal Data System (NGDS).
This submission comprises the data for Thermal Quality Analysis (project task 1) and includes all of the necessary shapefiles, rasters, datasets, code, and references to code repositories that were used to create the thermal resource and risk factor maps as part of the GPFA-AB project. The identified Geothermal Play Fairways are also provided with the larger dataset. Figures (.png) are provided as examples of the shapefiles and rasters. The regional standardized 1 square km grid used in the project is also provided as points (cell centers), polygons, and as a raster. Two ArcGIS toolboxes are available: 1) RegionalGridModels.tbx for creating resource and risk factor maps on the standardized grid, and 2) ThermalRiskFactorModels.tbx for use in making the thermal resource maps and cross sections. These toolboxes contain item description documentation for each model within the toolbox, and for the toolbox itself. This submission also contains three R scripts: 1) AddNewSeisFields.R to add seismic risk data to attribute tables of seismic risk, 2) StratifiedKrigingInterpolation.R for the interpolations used in the thermal resource analysis, and 3) LeaveOneOutCrossValidation.R for the cross validations used in the thermal interpolations.
Some file descriptions make reference to various 'memos'. These are contained within the final report submitted October 16, 2015.
Each zipped file in the submission contains an 'about' document describing the full Thermal Quality Analysis content available, along with key sources, authors, citation, use guidelines, and assumptions, with the specific file(s) contained within the .zip file highlighted.
UPDATE: Newer version of the Thermal Quality Analysis has been added here: https://gdr.openei.org/submissions/879 (Also linked below) Newer version of the Combined Risk Factor Analysis has been added here: https://gdr.openei.org/submissions/880 (Also linked below) This is one of sixteen associated .zip files relating to thermal resource interpolation results within the Thermal Quality Analysis task of the Low Temperature Geothermal Play Fairway Analysis for the Appalachian Basin. This file contains 6 images (.png) including predicted and associated error for surface heat flow, depth to 80 degrees C, depth to 100 degrees C, temperature at 1.5 km, temperature at 2.5 km and temperature at 3.5 km.
The sixteen files contain the results of the thermal resource interpolation as binary grid (raster) files, images (.png) of the rasters, and toolbox of ArcGIS Models used. Note that raster files ending in “pred” are the predicted mean for that resource, and files ending in “err” are the standard error of the predicted mean for that resource. Leave one out cross validation results are provided for each thermal resource.
Several models were built in order to process the well database with outliers removed. ArcGIS toolbox ThermalRiskFactorModels contains the ArcGIS processing tools used. First, the WellClipsToWormSections model was used to clip the wells to the worm sections (interpolation regions). Then, the 1 square km gridded regions (see series of 14 Worm Based Interpolation Boundaries .zip files) along with the wells in those regions were loaded into R using the rgdal package. Then, a stratified kriging algorithm implemented in the R gstat package was used to create rasters of the predicted mean and the standard error of the predicted mean. The code used to make these rasters is called StratifiedKrigingInterpolation.R Details about the interpolation, and exploratory data analysis on the well data is provided in 9_GPFA-AB_InterpolationThermalFieldEstimation.pdf (Smith, 2015), contained within the final report.
The output rasters from R are brought into ArcGIS for further spatial processing. First, the BufferedRasterToClippedRaster tool is used to clip the interpolations back to the Worm Sections. Then, the Mosaic tool in ArcGIS is used to merge all predicted mean rasters into a single raster, and all error rasters into a single raster for each thermal resource.
A leave one out cross validation was performed on each of the thermal resources. The code used to implement the cross validation is provided in the R script LeaveOneOutCrossValidation.R. The results of the cross validation are given for each thermal resource.
Other tools provided in this toolbox are useful for creating cross sections of the thermal resource. ExtractThermalPropertiesToCrossSection model extracts the predicted mean and the standard error of predicted mean to the attribute table of a line of cross section. The AddExtraInfoToCrossSection model is then used to add any other desired information, such as state and county boundaries, to the cross section attribute table. These two functions can be combined as a single function, as provided by the CrossSectionExtraction model.
This dataset is one of several segments of a regional high detailed stream flowpath dataset. The data was separated using the TOPO 50 map series extents.The stream network was originally created for the purpose of high detailed work along rivers and streams in the Wellington region. It was started as a pilot study for the Mangatarere subcatchment of the Waiohine River for the Environmental Sciences department who was attempting to measure riparian vegetation. The data was sourced from a modelled stream network created using the 2013 LiDAR digital elevation model. Once the Mangatarere was complete the process was expanded to cover the entire region on an as needed basis for each whaitua. This dataset is one of several that shows the finished stream datasets for the Wairarapa region.The base stream network was created using a mixture of tools found in ArcGIS Spatial Analyst under Hydrology along with processes located in the Arc Hydro downloadable add-on for ArcGIS. The initial workflow for the data was based on the information derived from the help files provided at the Esri ArcGIS 10.1 online help files. The updated process uses the core Spatial Analyst tools to generate the streamlines while digital dams are corrected using the DEM Reconditioning tool provided by the Arc Hydro toolset. The whaitua were too large for processing separated into smaller units according to the subcatchments within it. In select cases like the Taueru subcatchment of the Ruamahanga these subcatchments need to be further defined to allow processing. The catchment boundaries available are not as precise as the LiDAR information which causes overland flows that are on edges of the catchments to become disjointed from each other and required manual correction.Attributes were added to the stream network using the River Environment Classification (REC) stream network from NIWA. The Spatial Join tool in Arcmap was used to add the Reach ID to each segment of the generated flow path. This ID was used to join a table which had been created by intersecting stream names (generated from a point feature class available from LINZ) with the REC subcatchment dataset. Both of the REC datasets are available from NIWA's website.