91 datasets found
  1. r

    Journal of business analytics Abstract & Indexing - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Jun 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Journal of business analytics Abstract & Indexing - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/abstract-and-indexing/571/journal-of-business-analytics
    Explore at:
    Dataset updated
    Jun 20, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of business analytics Abstract & Indexing - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory

  2. r

    Journal of business analytics Impact Factor 2024-2025 - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Journal of business analytics Impact Factor 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/impact-factor-if/571/journal-of-business-analytics
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of business analytics Impact Factor 2024-2025 - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory

  3. r

    Journal of Big Data Abstract & Indexing - ResearchHelpDesk

    • researchhelpdesk.org
    Updated May 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Journal of Big Data Abstract & Indexing - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/abstract-and-indexing/289/journal-of-big-data
    Explore at:
    Dataset updated
    May 4, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of Big Data Abstract & Indexing - ResearchHelpDesk - The Journal of Big Data publishes high-quality, scholarly research papers, methodologies and case studies covering a broad range of topics, from big data analytics to data-intensive computing and all applications of big data research. The journal examines the challenges facing big data today and going forward including, but not limited to: data capture and storage; search, sharing, and analytics; big data technologies; data visualization; architectures for massively parallel processing; data mining tools and techniques; machine learning algorithms for big data; cloud computing platforms; distributed file systems and databases; and scalable storage systems. Academic researchers and practitioners will find the Journal of Big Data to be a seminal source of innovative material. All articles published by the Journal of Big Data are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers. As authors of articles published in the Journal of Big Data you are the copyright holders of your article and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate your article, according to the SpringerOpen copyright and license agreement. For those of you who are US government employees or are prevented from being copyright holders for similar reasons, SpringerOpen can accommodate non-standard copyright lines.

  4. f

    Efficiency and optimal size of hospitals: Results of a systematic search

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro (2023). Efficiency and optimal size of hospitals: Results of a systematic search [Dataset]. http://doi.org/10.1371/journal.pone.0174533
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundNational Health Systems managers have been subject in recent years to considerable pressure to increase concentration and allow mergers. This pressure has been justified by a belief that larger hospitals lead to lower average costs and better clinical outcomes through the exploitation of economies of scale. In this context, the opportunity to measure scale efficiency is crucial to address the question of optimal productive size and to manage a fair allocation of resources.Methods and findingsThis paper analyses the stance of existing research on scale efficiency and optimal size of the hospital sector. We performed a systematic search of 45 past years (1969–2014) of research published in peer-reviewed scientific journals recorded by the Social Sciences Citation Index concerning this topic. We classified articles by the journal’s category, research topic, hospital setting, method and primary data analysis technique. Results showed that most of the studies were focussed on the analysis of technical and scale efficiency or on input / output ratio using Data Envelopment Analysis. We also find increasing interest concerning the effect of possible changes in hospital size on quality of care.ConclusionsStudies analysed in this review showed that economies of scale are present for merging hospitals. Results supported the current policy of expanding larger hospitals and restructuring/closing smaller hospitals. In terms of beds, studies reported consistent evidence of economies of scale for hospitals with 200–300 beds. Diseconomies of scale can be expected to occur below 200 beds and above 600 beds.

  5. Z

    Data and Statistical analysis for: "Predator in the pool? A quantitative...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clements, Jeff C. (2020). Data and Statistical analysis for: "Predator in the pool? A quantitative evaluation of non-indexed open access journals in aquaculture research" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_1188937
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Clements, Jeff C.
    Froehlich, Halley E.
    Daigle, Rémi M.
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Data and Statistical analysis for: "Predator in the pool? A quantitative evaluation of non-indexed open access journals in aquaculture research" published in Frontiers in Marine Science

  6. r

    Journal of theoretical and applied computer science Abstract & Indexing -...

    • researchhelpdesk.org
    Updated Feb 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2023). Journal of theoretical and applied computer science Abstract & Indexing - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/abstract-and-indexing/351/journal-of-theoretical-and-applied-computer-science
    Explore at:
    Dataset updated
    Feb 16, 2023
    Dataset authored and provided by
    Research Help Desk
    Description

    Journal of theoretical and applied computer science Abstract & Indexing - ResearchHelpDesk - Journal of Theoretical and Applied Computer Science is published by the Computer Science Commision, operating within the Gdansk Branch of Polish Academy of Sciences and located in Szczecin, Poland. JTACS is an open access journal, publishing original research and review papers from the variety of subdiscplines connected to theoretical and applied computer science, including the following: Artificial intelligence Computer modelling and simulation Data analysis and classification Pattern recognition Computer graphics and image processing Information systems engineering Software engineering Computer systems architecture Distributed and parallel processing Computer systems security Web technologies Bioinformatics Abstract and indexing Doaj (Dicretroy of open access journals) Index copurnicus Baztech Google scholar

  7. d

    Canadian Student-led Academic Journals - platforms and indexing data

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maistrovskaya, Mariya (2023). Canadian Student-led Academic Journals - platforms and indexing data [Dataset]. http://doi.org/10.5683/SP3/QXEUVH
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Maistrovskaya, Mariya
    Description

    This dataset was compiled as part of a study on Barriers and Opportunities in the Discoverability and Indexing of Student-led Academic Journals. The list of student journals and their details is compiled from public sources. This list is used to identify the presence of Canadian student journals in Google Scholar as well as in select indexes and databases: DOAJ, Scopus, Web of Science, Medline, Erudit, ProQuest, and HeinOnline. Additionally, journal publishing platform is recorded to be used for a correlational analysis against Google Scholar indexing results. For further details see README.

  8. d

    Data of top 50 most cited articles about COVID-19 and the complications of...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Jul 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanya Singh; Jagadish Rao Padubidri; Pavanchand Shetty H; Matthew Antony Manoj; Therese Mary; Bhanu Thejaswi Pallempati (2025). Data of top 50 most cited articles about COVID-19 and the complications of COVID-19 [Dataset]. http://doi.org/10.5061/dryad.tx95x6b4m
    Explore at:
    Dataset updated
    Jul 25, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Tanya Singh; Jagadish Rao Padubidri; Pavanchand Shetty H; Matthew Antony Manoj; Therese Mary; Bhanu Thejaswi Pallempati
    Time period covered
    Jan 1, 2023
    Description

    Background This bibliometric analysis examines the top 50 most-cited articles on COVID-19 complications, offering insights into the multifaceted impact of the virus. Since its emergence in Wuhan in December 2019, COVID-19 has evolved into a global health crisis, with over 770 million confirmed cases and 6.9 million deaths as of September 2023. Initially recognized as a respiratory illness causing pneumonia and ARDS, its diverse complications extend to cardiovascular, gastrointestinal, renal, hematological, neurological, endocrinological, ophthalmological, hepatobiliary, and dermatological systems. Methods Identifying the top 50 articles from a pool of 5940 in Scopus, the analysis spans November 2019 to July 2021, employing terms related to COVID-19 and complications. Rigorous review criteria excluded non-relevant studies, basic science research, and animal models. The authors independently reviewed articles, considering factors like title, citations, publication year, journal, impact fa..., A bibliometric analysis of the most cited articles about COVID-19 complications was conducted in July 2021 using all journals indexed in Elsevier’s Scopus and Thomas Reuter’s Web of Science from November 1, 2019 to July 1, 2021. All journals were selected for inclusion regardless of country of origin, language, medical speciality, or electronic availability of articles or abstracts. The terms were combined as follows: (“COVID-19†OR “COVID19†OR “SARS-COV-2†OR “SARSCOV2†OR “SARS 2†OR “Novel coronavirus†OR “2019-nCov†OR “Coronavirus†) AND (“Complication†OR “Long Term Complication†OR “Post-Intensive Care Syndrome†OR “Venous Thromboembolism†OR “Acute Kidney Injury†OR “Acute Liver Injury†OR “Post COVID-19 Syndrome†OR “Acute Cardiac Injury†OR “Cardiac Arrest†OR “Stroke†OR “Embolism†OR “Septic Shock†OR “Disseminated Intravascular Coagulation†OR “Secondary Infection†OR “Blood Clots† OR “Cytokine Release Syndrome†OR “Paediatric Inflammatory Multisystem Syndrome†OR “Vaccine..., , # Data of top 50 most cited articles about COVID-19 and the complications of COVID-19

    This dataset contains information about the top 50 most cited articles about COVID-19 and the complications of COVID-19. We have looked into a variety of research and clinical factors for the analysis.

    Description of the data and file structure

    The data sheet offers a comprehensive analysis of the selected articles. It delves into specifics such as the publication year of the top 50 articles, the journals responsible for publishing them, and the geographical region with the highest number of citations in this elite list. Moreover, the sheet sheds light on the key players involved, including authors and their affiliated departments, in crafting the top 50 most cited articles.

    Beyond these fundamental aspects, the data sheet goes on to provide intricate details related to the study types and topics prevalent in the top 50 articles. To enrich the analysis, it incorporates clinical data, capturing...

  9. The number of available open access articles from Europe PubMed Central and...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eero Raittio; Ahmad Sofi-Mahmudi; Erfan Shamsoddin (2023). The number of available open access articles from Europe PubMed Central and the number of articles with “data/results not shown” phrases in journals of each publisher. [Dataset]. http://doi.org/10.1371/journal.pone.0272695.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Eero Raittio; Ahmad Sofi-Mahmudi; Erfan Shamsoddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The number of available open access articles from Europe PubMed Central and the number of articles with “data/results not shown” phrases in journals of each publisher.

  10. OA Diamond Journals Study. Dataset

    • zenodo.org
    bin, csv, pdf, txt
    Updated Jul 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeroen Bosman; Jeroen Bosman; Jan Erik Frantsvåg; Jan Erik Frantsvåg; Bianca Kramer; Bianca Kramer (2024). OA Diamond Journals Study. Dataset [Dataset]. http://doi.org/10.5281/zenodo.4553103
    Explore at:
    txt, bin, csv, pdfAvailable download formats
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jeroen Bosman; Jeroen Bosman; Jan Erik Frantsvåg; Jan Erik Frantsvåg; Bianca Kramer; Bianca Kramer
    Description

    Context
    From June 2020 to February 2021, a consortium of 10 organisations undertook a large-scale study on open access journals across the world that are free for readers and authors, usually referred to as “OA diamond journals”. This study was commissioned by cOAlition S in order to gain a better understanding of the OA diamond landscape.

    Presentation
    The study undertook a statistical analysis of several bibliographic databases, surveyed 1,619 journals, collected 7,019 free text submissions and other data from 94 questions, and organised three focus groups with 11 journals and 10 interviews with hosting platforms. It collected 163 references in the academic literature, and inventoried 1048 journals not listed in DOAJ.

    The results of the study are available in the following outputs:

    This dataset contains data used by and partly generated by the OA Diamond Journals Study on open access journals that do not charge authors. It contains the data files themselves as well as some readme texts with variable lists.

    Available files:

    • Survey questionnaire, English version (PDF)
    • Survey data without identifying information and without free texts answers (as these might also include identifying information) (CSV). This includes, for some questions, data from DOAJ for journals present in that database.
    • Readme text with the variable list for the survey data file (TXT)
    • Stratified sample of 500 records from the ROAD database of open access journals downloaded 20201102 (CSV)
    • Readme text with the variable list for the ROAD database sample (TXT)
    • Directory of Open Access Journals (DOAJ) metadata downloaded 20200602 (CSV)
    • Directory of Open Access Journals (DOAJ) metadata downloaded 20200918 (CSV)
    • Added and Removed change log DOAJ, downloaded 20210121 (CSV)
    • Readme text with variable list for the Added and Removed change log DOAJ (TXT)

    All data are available for reuse under a CC0 license.

    Additionally, an online version of the survey results (excluding DOAJ data and excluding free text answers) is available from SurveyMonkey

  11. r

    Australian and New Zealand journal of statistics Impact Factor 2024-2025 -...

    • researchhelpdesk.org
    Updated Feb 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). Australian and New Zealand journal of statistics Impact Factor 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/impact-factor-if/211/australian-and-new-zealand-journal-of-statistics
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    Australian and New Zealand journal of statistics Impact Factor 2024-2025 - ResearchHelpDesk - The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association. The main body of the journal is divided into three sections. The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data. The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context. The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems. In addition, suitable review papers and articles of historical and general interest will be considered. The journal also publishes book reviews on a regular basis. Abstracting and Indexing Information Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Elite (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) CompuMath Citation Index (Clarivate Analytics) Current Index to Statistics (ASA/IMS) Journal Citation Reports/Science Edition (Clarivate Analytics) Mathematical Reviews/MathSciNet/Current Mathematical Publications (AMS) RePEc: Research Papers in Economics Science Citation Index Expanded (Clarivate Analytics) SCOPUS (Elsevier) Statistical Theory & Method Abstracts (Zentralblatt MATH) ZBMATH (Zentralblatt MATH)

  12. Data from: QUALIS EVALUATION OF MEDICINE III: ANALYSIS OF ANESTHESIOLOGY AND...

    • scielo.figshare.com
    • datasetcatalog.nlm.nih.gov
    jpeg
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iracema de Mattos Paranhos Calderon (2023). QUALIS EVALUATION OF MEDICINE III: ANALYSIS OF ANESTHESIOLOGY AND GYNECOLOGY AND OBSTETRICS JOURNALS [Dataset]. http://doi.org/10.6084/m9.figshare.19959300.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Iracema de Mattos Paranhos Calderon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: To know the current publication of Anesthesiology and Obstetrics and Gynecology subareas, to support the updating of Qualis Journals criteria in these specific subareas. Method: Cross-sectional, descriptive study in which was evaluated in quantitatively and qualitatively way the bibliographic production of Anesthesiology and Obstetrics and Gynecology subareas, from January 2010 to December 2012. Were investigated the values of the impact factor; calculated (i) the number (n) and the percentage of journals in each stratum Qualis A1, A2, B1, B2, B3, B4 and B5, and (ii) the median values and their extreme limits (minimum values and maximum) and quartiles (p25; p50; p75; p90) of the impact factors in the different strata. Results: The bibliographic production of the three-year period 2010-2012 was published in 69 journals in Anesthesiology subarea and in 345 in Gynecology and Obstetrics. In Anesthesiology, 44% were within the limits of impact factor of superior A1, A2 and B1; in Obstetrics and Gynecology, 42.4% were in those limits and strata. Conclusions: Despite lagging behind by international standards, publications of Anesthesiology and Obstetrics and Gynecology showed tendency to improve the quality. In these sub-areas, the median of journals impact factor is beyond the limits defined by the area in the last assessment. Therefore, it must be reconsidered new indicators to assess this aspect.

  13. d

    Data release for solar-sensor angle analysis subset associated with the...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Western United States, United States
    Description

    This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

  14. f

    Frequency distribution of articles published in Business & Economic journals...

    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro (2023). Frequency distribution of articles published in Business & Economic journals by research topic. [Dataset]. http://doi.org/10.1371/journal.pone.0174533.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Frequency distribution of articles published in Business & Economic journals by research topic.

  15. Frequency distribution of articles published in Medicine journals by...

    • plos.figshare.com
    xls
    Updated Jun 5, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro (2023). Frequency distribution of articles published in Medicine journals by research setting. [Dataset]. http://doi.org/10.1371/journal.pone.0174533.t014
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Frequency distribution of articles published in Medicine journals by research setting.

  16. Z

    An analysis of the current overlay journals

    • data.niaid.nih.gov
    Updated Oct 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laakso, Mikael (2022). An analysis of the current overlay journals [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6420517
    Explore at:
    Dataset updated
    Oct 18, 2022
    Dataset provided by
    Laakso, Mikael
    Rousi, Antti M.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Research data to accommodate the article "Overlay journals: a study of the current landscape" (https://doi.org/10.1177/09610006221125208)

    Identifying the sample of overlay journals was an explorative process (occurring during April 2021 to February 2022). The sample of investigated overlay journals were identified by using the websites of Episciences.org (2021), Scholastica (2021), Free Journal Network (2021), Open Journals (2021), PubPub (2022), and Wikipedia (2021). In total, this study identified 34 overlay journals. Please see the paper for more details about the excluded journal types.

    The journal ISSN numbers, manuscript source repositories, first overlay volumes, article volumes, publication languages, peer-review type, licence for published articles, author costs, publisher types, submission policy, and preprint availability policy were observed by inspecting journal editorial policies and submission guidelines found from journal websites. The overlay journals’ ISSN numbers were identified by examining journal websites and cross-checking this information with the Ulrich’s periodicals database (Ulrichsweb, 2021). Journals that published review reports, either with reviewers’ names or anonymously, were classified as operating with open peer-review. Publisher types defined by Laakso and Björk (2013) were used to categorise the findings concerning the publishers. If the journal website did not include publisher information, the editorial board was interpreted to publish the journal.

    The Organisation for Economic Co-operation and Development (OECD) field of science classification was used to categorise the journals into different domains of science. The journals’ primary OECD field of sciences were defined by the authors through examining the journal websites.

    Whether the journals were indexed in the Directory of Open Access Journals (DOAJ), Scopus, or Clarivate Analytics’ Web of Science Core collection’s journal master list was examined by searching the services with journal ISSN numbers and journal titles.

    The identified overlay journals were examined from the viewpoint of both qualitative and quantitative journal metrics. The qualitative metrics comprised the Nordic expert panel rankings of scientific journals, namely the Finnish Publication Forum, the Danish Bibliometric Research Indicator and the Norwegian Register for Scientific Journals, Series and Publishers. Searches were conducted from the web portals of the above services with both ISSN numbers and journal titles. Clarivate Analytics’ Journal Citation Reports database was searched with the use of both ISSN numbers and journal titles to identify whether the journals had a Journal Citation Indicator (JCI), Two-Year Impact Factor (IF) and an Impact Factor ranking (IF rank). The examined Journal Impact Factors and Impact Factor rankings were for the year 2020 (as released in 2021).

  17. m

    Inflation- Unemployment Data & Analysis Codes (R)

    • data.mendeley.com
    Updated Sep 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hazar Altinbas (2018). Inflation- Unemployment Data & Analysis Codes (R) [Dataset]. http://doi.org/10.17632/v9679528f7.1
    Explore at:
    Dataset updated
    Sep 11, 2018
    Authors
    Hazar Altinbas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data is used for examination of inflation- unemployment relationship for 18 countries after 1991. Inflation data is obtained from World Bank database (https://data.worldbank.org/indicator/FP.CPI.TOTL.ZG) and unemployment data is obtained from International Labor Organization (http://www.ilo.org/wesodata/).

    Analysis period is different for all countries because of structural breaks determined by single point change point detection algorithm included in changepoint package of Killick & Eckley (2014). Granger-causality is conducted with Toda&Yamamoto (1995) procedure. Integration levels are determined with 3 stationary tests. VAR models are run with vars package (Pfaff, Stigler & Pfaff; 2018) without trend and constant terms. Cointegration test is conducted with urca package (Pfaff, Zivot, Stigler & Pfaff; 2016).

    All data files are .csv files. Analyst need to change country index (variable name: j) in order to see individual results. Findings can be seen in the article.

    Killick, R., & Eckley, I. (2014). changepoint: An R package for changepoint analysis. Journal of statistical software, 58(3), 1-19.

    Pfaff, B., Stigler, M., & Pfaff, M. B. (2018). Package ‘vars’. Online] https://cran. r-project. org/web/packages/vars/vars. pdf.

    Pfaff, B., Zivot, E., Stigler, M., & Pfaff, M. B. (2016). Package ‘urca’. Unit root and cointegration tests for time series data. R package version, 1-2.

    Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of econometrics, 66(1-2), 225-250.

  18. Numbers of Submissions and Acceptance Rates for Core Economics Journals,...

    • figshare.com
    xlsx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuqing Zheng (2023). Numbers of Submissions and Acceptance Rates for Core Economics Journals, 2008 and 2013 [Dataset]. http://doi.org/10.6084/m9.figshare.3423357.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Yuqing Zheng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. Sample: economics journals indexed in Journal Citation Reports (JCR) compiled by the Institute for Scientific Information, for the years of 2008 and 20132. We surveyed the journal editors to obtain the numbers of submissions.3. Acceptance rate = Number of articles published/Number of submission, a rough approximation for the real acceptance rate4. Other information such as impact factor is from the JCR
  19. Frequency distribution of articles published by Operations research &...

    • plos.figshare.com
    xls
    Updated Jun 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro (2023). Frequency distribution of articles published by Operations research & Management Science journals. [Dataset]. http://doi.org/10.1371/journal.pone.0174533.t017
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Monica Giancotti; Annamaria Guglielmo; Marianna Mauro
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Frequency distribution of articles published by Operations research & Management Science journals.

  20. H

    Data from: Bibliometric analysis and visualization of Islamic economics and...

    • dataverse.harvard.edu
    Updated Aug 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luqman Hakim Handoko 1 (2020). Bibliometric analysis and visualization of Islamic economics and finance articles indexed in Scopus by Indonesian authors [Dataset]. http://doi.org/10.7910/DVN/YGWA06
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 20, 2020
    Dataset provided by
    Harvard Dataverse
    Authors
    Luqman Hakim Handoko 1
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    Dataset 1. Raw data of IEF articles Suppl. 1. List of top 25 journals on Scimago journals ranking Suppl. 2. List of keywords Suppl. 3. List of 30 journals based on

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Research Help Desk (2022). Journal of business analytics Abstract & Indexing - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/abstract-and-indexing/571/journal-of-business-analytics

Journal of business analytics Abstract & Indexing - ResearchHelpDesk

Explore at:
Dataset updated
Jun 20, 2022
Dataset authored and provided by
Research Help Desk
Description

Journal of business analytics Abstract & Indexing - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory

Search
Clear search
Close search
Google apps
Main menu