23 datasets found
  1. s

    Library for Online Learning Algorithms (LIBOL)

    • researchdata.smu.edu.sg
    bin
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HOI Steven; Jialei WANG; Peilin ZHAO (2023). Library for Online Learning Algorithms (LIBOL) [Dataset]. http://doi.org/10.25440/smu.12062739.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SMU Research Data Repository (RDR)
    Authors
    HOI Steven; Jialei WANG; Peilin ZHAO
    License

    https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

    Description

    LIBOL is an open-source machine learning library that consists of a family of classical and state-of-the-art online learning algorithms for large-scale machine learning and data mining research. It includes two categories of online learning methods: regular linear online learning algorithms and kernel-based online learning algorithms.Related Publication: Hoi, S. C. H., Wang, J., & Zhao, P. (2014). LIBOL: A library for online learning algorithms. Journal of Machine Learning Research, 15 (1), 495-499. http://jmlr.org/papers/v15/hoi14a.html

  2. m

    pinterest_dataset

    • data.mendeley.com
    Updated Oct 27, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pinterest_dataset [Dataset]. https://data.mendeley.com/datasets/fs4k2zc5j5/2
    Explore at:
    Dataset updated
    Oct 27, 2017
    Authors
    Juan Carlos Gomez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset with 72000 pins from 117 users in Pinterest. Each pin contains a short raw text and an image. The images are processed using a pretrained Convolutional Neural Network and transformed into a vector of 4096 features.

    This dataset was used in the paper "User Identification in Pinterest Through the Refinement of a Cascade Fusion of Text and Images" to idenfity specific users given their comments. The paper is publishe in the Research in Computing Science Journal, as part of the LKE 2017 conference. The dataset includes the splits used in the paper.

    There are nine files. text_test, text_train and text_val, contain the raw text of each pin in the corresponding split of the data. imag_test, imag_train and imag_val contain the image features of each pin in the corresponding split of the data. train_user and val_test_users contain the index of the user of each pin (between 0 and 116). There is a correspondance one-to-one among the test, train and validation files for images, text and users. There are 400 pins per user in the train set, and 100 pins per user in the validation and test sets each one.

    If you have questions regarding the data, write to: jc dot gomez at ugto dot mx

  3. r

    International Journal of Engineering and Advanced Technology Acceptance Rate...

    • researchhelpdesk.org
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology Acceptance Rate - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/acceptance-rate/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology Acceptance Rate - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level

  4. r

    International Journal of Engineering and Advanced Technology -...

    • researchhelpdesk.org
    Updated Feb 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    Feb 23, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level agreements (drafting,

  5. Dataset: Shell Commands Used by Participants of Hands-on Cybersecurity...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Valdemar Švábenský; Valdemar Švábenský; Jan Vykopal; Jan Vykopal; Pavel Seda; Pavel Seda; Pavel Čeleda; Pavel Čeleda (2023). Dataset: Shell Commands Used by Participants of Hands-on Cybersecurity Training [Dataset]. http://doi.org/10.5281/zenodo.6670113
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Valdemar Švábenský; Valdemar Švábenský; Jan Vykopal; Jan Vykopal; Pavel Seda; Pavel Seda; Pavel Čeleda; Pavel Čeleda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains supplementary materials for the following journal paper:

    Valdemar Švábenský, Jan Vykopal, Pavel Seda, and Pavel Čeleda.
    Dataset of Shell Commands Used by Participants of Hands-on Cybersecurity Training.
    In Elsevier Data in Brief. 2021.
    Available as open-access article on https://doi.org/10.1016/j.dib.2021.107398

    Version history

    Structure

    We share two types of content described below. Both types of materials include:

    • a link to an up-to-date GitLab repository, which may contain possible future revisions and error corrections, and
    • a ZIP archive here on Zenodo that serves as a snapshot of the state when the article was published.

    Attached content

    1. Dataset. The collected data are attached here and also available at this repository.
    2. Analytical tools. To analyze the data, you can instantiate this project for ELK.

    How to cite

    If you use or build upon the materials, please use the BibTeX entry below to cite the original work.

    @article{Svabensky2021dataset,
      author  = {\v{S}v\'{a}bensk\'{y}, Valdemar and Vykopal, Jan and Seda, Pavel and \v{C}eleda, Pavel},
      title   = {Dataset of shell commands used by participants of hands-on cybersecurity training},
      journal  = {{Data in Brief}},
      publisher = {Elsevier},
      issn   = {2352-3409},
      year   = {2021},
      volume  = {38},
      doi    = {10.1016/j.dib.2021.107398},
      url    = {https://www.sciencedirect.com/science/article/pii/S2352340921006806}
    }

    The data were collected using a logging toolset referenced here.

  6. f

    The contingency table for exercise i and exercise j.

    • figshare.com
    xls
    Updated Dec 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linqing Li; Zhifeng Wang (2023). The contingency table for exercise i and exercise j. [Dataset]. http://doi.org/10.1371/journal.pone.0295808.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 22, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Linqing Li; Zhifeng Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The labels: “F” and “T” present the student answering the exercise incorrectly or correctly.

  7. i

    Data from: Twitter Big Data as a Resource for Exoskeleton Research: A...

    • ieee-dataport.org
    Updated Oct 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur (2022). Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets and 100 Research Questions [Dataset]. http://doi.org/10.21227/r5mv-ax79
    Explore at:
    Dataset updated
    Oct 22, 2022
    Dataset provided by
    IEEE Dataport
    Authors
    Nirmalya Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite the following paper when using this dataset:N. Thakur, "Twitter Big Data as a Resource for Exoskeleton Research: A Large-Scale Dataset of about 140,000 Tweets from 2017–2022 and 100 Research Questions", Journal of Analytics, Volume 1, Issue 2, 2022, pp. 72-97, DOI: https://doi.org/10.3390/analytics1020007AbstractThe exoskeleton technology has been rapidly advancing in the recent past due to its multitude of applications and diverse use cases in assisted living, military, healthcare, firefighting, and industry 4.0. The exoskeleton market is projected to increase by multiple times its current value within the next two years. Therefore, it is crucial to study the degree and trends of user interest, views, opinions, perspectives, attitudes, acceptance, feedback, engagement, buying behavior, and satisfaction, towards exoskeletons, for which the availability of Big Data of conversations about exoskeletons is necessary. The Internet of Everything style of today’s living, characterized by people spending more time on the internet than ever before, with a specific focus on social media platforms, holds the potential for the development of such a dataset by the mining of relevant social media conversations. Twitter, one such social media platform, is highly popular amongst all age groups, where the topics found in the conversation paradigms include emerging technologies such as exoskeletons. To address this research challenge, this work makes two scientific contributions to this field. First, it presents an open-access dataset of about 140,000 Tweets about exoskeletons that were posted in a 5-year period from 21 May 2017 to 21 May 2022. Second, based on a comprehensive review of the recent works in the fields of Big Data, Natural Language Processing, Information Retrieval, Data Mining, Pattern Recognition, and Artificial Intelligence that may be applied to relevant Twitter data for advancing research, innovation, and discovery in the field of exoskeleton research, a total of 100 Research Questions are presented for researchers to study, analyze, evaluate, ideate, and investigate based on this dataset.

  8. r

    International Journal of Engineering and Advanced Technology CiteScore...

    • researchhelpdesk.org
    Updated Apr 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Engineering and Advanced Technology CiteScore 2024-2025 - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/sjr/552/international-journal-of-engineering-and-advanced-technology
    Explore at:
    Dataset updated
    Apr 5, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Engineering and Advanced Technology CiteScore 2024-2025 - ResearchHelpDesk - International Journal of Engineering and Advanced Technology (IJEAT) is having Online-ISSN 2249-8958, bi-monthly international journal, being published in the months of February, April, June, August, October, and December by Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP) Bhopal (M.P.), India since the year 2011. It is academic, online, open access, double-blind, peer-reviewed international journal. It aims to publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. All submitted papers will be reviewed by the board of committee of IJEAT. Aim of IJEAT Journal disseminate original, scientific, theoretical or applied research in the field of Engineering and allied fields. dispense a platform for publishing results and research with a strong empirical component. aqueduct the significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. seek original and unpublished research papers based on theoretical or experimental works for the publication globally. publish original, theoretical and practical advances in Computer Science & Engineering, Information Technology, Electrical and Electronics Engineering, Electronics and Telecommunication, Mechanical Engineering, Civil Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. impart a platform for publishing results and research with a strong empirical component. create a bridge for a significant gap between research and practice by promoting the publication of original, novel, industry-relevant research. solicit original and unpublished research papers, based on theoretical or experimental works. Scope of IJEAT International Journal of Engineering and Advanced Technology (IJEAT) covers all topics of all engineering branches. Some of them are Computer Science & Engineering, Information Technology, Electronics & Communication, Electrical and Electronics, Electronics and Telecommunication, Civil Engineering, Mechanical Engineering, Textile Engineering and all interdisciplinary streams of Engineering Sciences. The main topic includes but not limited to: 1. Smart Computing and Information Processing Signal and Speech Processing Image Processing and Pattern Recognition WSN Artificial Intelligence and machine learning Data mining and warehousing Data Analytics Deep learning Bioinformatics High Performance computing Advanced Computer networking Cloud Computing IoT Parallel Computing on GPU Human Computer Interactions 2. Recent Trends in Microelectronics and VLSI Design Process & Device Technologies Low-power design Nanometer-scale integrated circuits Application specific ICs (ASICs) FPGAs Nanotechnology Nano electronics and Quantum Computing 3. Challenges of Industry and their Solutions, Communications Advanced Manufacturing Technologies Artificial Intelligence Autonomous Robots Augmented Reality Big Data Analytics and Business Intelligence Cyber Physical Systems (CPS) Digital Clone or Simulation Industrial Internet of Things (IIoT) Manufacturing IOT Plant Cyber security Smart Solutions – Wearable Sensors and Smart Glasses System Integration Small Batch Manufacturing Visual Analytics Virtual Reality 3D Printing 4. Internet of Things (IoT) Internet of Things (IoT) & IoE & Edge Computing Distributed Mobile Applications Utilizing IoT Security, Privacy and Trust in IoT & IoE Standards for IoT Applications Ubiquitous Computing Block Chain-enabled IoT Device and Data Security and Privacy Application of WSN in IoT Cloud Resources Utilization in IoT Wireless Access Technologies for IoT Mobile Applications and Services for IoT Machine/ Deep Learning with IoT & IoE Smart Sensors and Internet of Things for Smart City Logic, Functional programming and Microcontrollers for IoT Sensor Networks, Actuators for Internet of Things Data Visualization using IoT IoT Application and Communication Protocol Big Data Analytics for Social Networking using IoT IoT Applications for Smart Cities Emulation and Simulation Methodologies for IoT IoT Applied for Digital Contents 5. Microwaves and Photonics Microwave filter Micro Strip antenna Microwave Link design Microwave oscillator Frequency selective surface Microwave Antenna Microwave Photonics Radio over fiber Optical communication Optical oscillator Optical Link design Optical phase lock loop Optical devices 6. Computation Intelligence and Analytics Soft Computing Advance Ubiquitous Computing Parallel Computing Distributed Computing Machine Learning Information Retrieval Expert Systems Data Mining Text Mining Data Warehousing Predictive Analysis Data Management Big Data Analytics Big Data Security 7. Energy Harvesting and Wireless Power Transmission Energy harvesting and transfer for wireless sensor networks Economics of energy harvesting communications Waveform optimization for wireless power transfer RF Energy Harvesting Wireless Power Transmission Microstrip Antenna design and application Wearable Textile Antenna Luminescence Rectenna 8. Advance Concept of Networking and Database Computer Network Mobile Adhoc Network Image Security Application Artificial Intelligence and machine learning in the Field of Network and Database Data Analytic High performance computing Pattern Recognition 9. Machine Learning (ML) and Knowledge Mining (KM) Regression and prediction Problem solving and planning Clustering Classification Neural information processing Vision and speech perception Heterogeneous and streaming data Natural language processing Probabilistic Models and Methods Reasoning and inference Marketing and social sciences Data mining Knowledge Discovery Web mining Information retrieval Design and diagnosis Game playing Streaming data Music Modelling and Analysis Robotics and control Multi-agent systems Bioinformatics Social sciences Industrial, financial and scientific applications of all kind 10. Advanced Computer networking Computational Intelligence Data Management, Exploration, and Mining Robotics Artificial Intelligence and Machine Learning Computer Architecture and VLSI Computer Graphics, Simulation, and Modelling Digital System and Logic Design Natural Language Processing and Machine Translation Parallel and Distributed Algorithms Pattern Recognition and Analysis Systems and Software Engineering Nature Inspired Computing Signal and Image Processing Reconfigurable Computing Cloud, Cluster, Grid and P2P Computing Biomedical Computing Advanced Bioinformatics Green Computing Mobile Computing Nano Ubiquitous Computing Context Awareness and Personalization, Autonomic and Trusted Computing Cryptography and Applied Mathematics Security, Trust and Privacy Digital Rights Management Networked-Driven Multicourse Chips Internet Computing Agricultural Informatics and Communication Community Information Systems Computational Economics, Digital Photogrammetric Remote Sensing, GIS and GPS Disaster Management e-governance, e-Commerce, e-business, e-Learning Forest Genomics and Informatics Healthcare Informatics Information Ecology and Knowledge Management Irrigation Informatics Neuro-Informatics Open Source: Challenges and opportunities Web-Based Learning: Innovation and Challenges Soft computing Signal and Speech Processing Natural Language Processing 11. Communications Microstrip Antenna Microwave Radar and Satellite Smart Antenna MIMO Antenna Wireless Communication RFID Network and Applications 5G Communication 6G Communication 12. Algorithms and Complexity Sequential, Parallel And Distributed Algorithms And Data Structures Approximation And Randomized Algorithms Graph Algorithms And Graph Drawing On-Line And Streaming Algorithms Analysis Of Algorithms And Computational Complexity Algorithm Engineering Web Algorithms Exact And Parameterized Computation Algorithmic Game Theory Computational Biology Foundations Of Communication Networks Computational Geometry Discrete Optimization 13. Software Engineering and Knowledge Engineering Software Engineering Methodologies Agent-based software engineering Artificial intelligence approaches to software engineering Component-based software engineering Embedded and ubiquitous software engineering Aspect-based software engineering Empirical software engineering Search-Based Software engineering Automated software design and synthesis Computer-supported cooperative work Automated software specification Reverse engineering Software Engineering Techniques and Production Perspectives Requirements engineering Software analysis, design and modelling Software maintenance and evolution Software engineering tools and environments Software engineering decision support Software design patterns Software product lines Process and workflow management Reflection and metadata approaches Program understanding and system maintenance Software domain modelling and analysis Software economics Multimedia and hypermedia software engineering Software engineering case study and experience reports Enterprise software, middleware, and tools Artificial intelligent methods, models, techniques Artificial life and societies Swarm intelligence Smart Spaces Autonomic computing and agent-based systems Autonomic computing Adaptive Systems Agent architectures, ontologies, languages and protocols Multi-agent systems Agent-based learning and knowledge discovery Interface agents Agent-based auctions and marketplaces Secure mobile and multi-agent systems Mobile agents SOA and Service-Oriented Systems Service-centric software engineering Service oriented requirements engineering Service oriented architectures Middleware for service based systems Service discovery and composition Service level

  9. r

    International Journal of Artificial Intelligence Acceptance Rate -...

    • researchhelpdesk.org
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Artificial Intelligence Acceptance Rate - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/acceptance-rate/586/international-journal-of-artificial-intelligence
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Artificial Intelligence Acceptance Rate - ResearchHelpDesk - The main aim of the International Journal of Artificial Intelligence™ (ISSN 0974-0635) is to publish refereed, well-written original research articles, and studies that describe the latest research and developments in the area of Artificial Intelligence. This is a broad-based journal covering all branches of Artificial Intelligence and its application in the following topics: Technology & Computing; Fuzzy Logic; Neural Networks; Reasoning and Evolution; Automatic Control; Mechatronics; Robotics; Parallel Processing; Programming Languages; Software & Hardware Architectures; CAD Design & Testing; Web Intelligence Applications; Computer Vision and Speech Understanding; Multimedia & Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Computational Theories of Learning; Signal, Image & Speech Processing; Intelligent System Architectures; Knowledge Representation; Bioinformatics; Natural Language Processing; Mathematics & Physics. The International Journal of Artificial Intelligence (IJAI) is a peer-reviewed online journal and is published in Spring and Autumn i.e. two times in a year. The International Journal of Artificial Intelligence (ISSN 0974-0635) was reviewed, abstracted and indexed in the past by the INSPEC The IET, SCOPUS (Elsevier Bibliographic Databases), Zentralblatt MATH (io-port.net) of European Mathematical Society, Indian Science Abstracts, getCITED, SCImago Journal & Country Rank, Newjour, JournalSeek, Math-jobs.com’s Journal Index, Academic keys, Ulrich's Periodicals Directory, IndexCopernicus, and International Statistical Institute (ISI, Netherlands)Journal Index. The IJAI is already in request process to get reviewed, abstracted and indexed by the Clarivate Analytics Web of Science (Also known as Thomson ISI Web of Knowledge SCI), Mathematical Reviews and MathSciNet of American Mathematical Society, and by other agencies.

  10. r

    International Journal of Artificial Intelligence FAQ - ResearchHelpDesk

    • researchhelpdesk.org
    Updated Jun 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International Journal of Artificial Intelligence FAQ - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/faq/586/international-journal-of-artificial-intelligence
    Explore at:
    Dataset updated
    Jun 22, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International Journal of Artificial Intelligence FAQ - ResearchHelpDesk - The main aim of the International Journal of Artificial Intelligence™ (ISSN 0974-0635) is to publish refereed, well-written original research articles, and studies that describe the latest research and developments in the area of Artificial Intelligence. This is a broad-based journal covering all branches of Artificial Intelligence and its application in the following topics: Technology & Computing; Fuzzy Logic; Neural Networks; Reasoning and Evolution; Automatic Control; Mechatronics; Robotics; Parallel Processing; Programming Languages; Software & Hardware Architectures; CAD Design & Testing; Web Intelligence Applications; Computer Vision and Speech Understanding; Multimedia & Cognitive Informatics, Data Mining and Machine Learning Tools, Heuristic and AI Planning Strategies and Tools, Computational Theories of Learning; Signal, Image & Speech Processing; Intelligent System Architectures; Knowledge Representation; Bioinformatics; Natural Language Processing; Mathematics & Physics. The International Journal of Artificial Intelligence (IJAI) is a peer-reviewed online journal and is published in Spring and Autumn i.e. two times in a year. The International Journal of Artificial Intelligence (ISSN 0974-0635) was reviewed, abstracted and indexed in the past by the INSPEC The IET, SCOPUS (Elsevier Bibliographic Databases), Zentralblatt MATH (io-port.net) of European Mathematical Society, Indian Science Abstracts, getCITED, SCImago Journal & Country Rank, Newjour, JournalSeek, Math-jobs.com’s Journal Index, Academic keys, Ulrich's Periodicals Directory, IndexCopernicus, and International Statistical Institute (ISI, Netherlands)Journal Index. The IJAI is already in request process to get reviewed, abstracted and indexed by the Clarivate Analytics Web of Science (Also known as Thomson ISI Web of Knowledge SCI), Mathematical Reviews and MathSciNet of American Mathematical Society, and by other agencies.

  11. l

    LSC (Leicester Scientific Corpus)

    • figshare.le.ac.uk
    Updated Apr 15, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSC (Leicester Scientific Corpus) [Dataset]. https://figshare.le.ac.uk/articles/dataset/LSC_Leicester_Scientific_Corpus_/9449639
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LSC (Leicester Scientific Corpus)

    April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online

    The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R

    The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:

    Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.

    Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.

  12. r

    International journal of machine learning and computing Acceptance Rate -...

    • researchhelpdesk.org
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Help Desk (2022). International journal of machine learning and computing Acceptance Rate - ResearchHelpDesk [Dataset]. https://www.researchhelpdesk.org/journal/acceptance-rate/355/international-journal-of-machine-learning-and-computing
    Explore at:
    Dataset updated
    Feb 15, 2022
    Dataset authored and provided by
    Research Help Desk
    Description

    International journal of machine learning and computing Acceptance Rate - ResearchHelpDesk - International Journal of Machine Learning and Computing - IJMLC is an international academic open access journal which gains a foothold in Singapore, Asia and opens to the world. It aims to promote the integration of machine learning and computing. The focus is to publish papers on state-of-the-art machine learning and computing. Submitted papers will be reviewed by technical committees of the Journal and Association. The audience includes researchers, managers and operators for machine learning and computing as well as designers and developers. All submitted articles should report original, previously unpublished research results, experimental or theoretical, and will be peer-reviewed. Articles submitted to the journal should meet these criteria and must not be under consideration for publication elsewhere. Manuscripts should follow the style of the journal and are subject to both review and editing. IJMLC is an open access journal which focus on publishing original and peer reviewed research papers on all aspects of machine learning and computing. And the topics include but not limited to: Adaptive systems Business intelligence Biometrics Bioinformatics Data and web mining Intelligent agent Financial engineering Inductive learning Geo-informatics Pattern Recognition Logistics Intelligent control Media computing Neural net and support vector machine Hybrid and nonlinear system Fuzzy set theory, fuzzy control and system Knowledge management Information retrieval Intelligent and knowledge based system Rough and fuzzy rough set Networking and information security Evolutionary computation Ensemble method Information fusion Visual information processing Computational life science Abstract & indexing Scopus (since 2017), EI (INSPEC, IET), Google Scholar, Crossref, ProQuest, Electronic Journals Library.

  13. Literature review on predicting academic achievement.

    • plos.figshare.com
    xls
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaitong Wang (2024). Literature review on predicting academic achievement. [Dataset]. http://doi.org/10.1371/journal.pone.0309141.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Kaitong Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Literature review on predicting academic achievement.

  14. Z

    Science Education Research Topic Modeling Dataset

    • data.niaid.nih.gov
    Updated Oct 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John L. Rudolph (2020). Science Education Research Topic Modeling Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4094973
    Explore at:
    Dataset updated
    Oct 20, 2020
    Dataset provided by
    John L. Rudolph
    Tor Ole B. Odden
    Alessandro Marin
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset contains scraped and processed text from roughly 100 years of articles published in the Wiley journal Science Education (formerly General Science Quarterly). This text has been cleaned and filtered in preparation for analysis using natural language processing techniques, particularly topic modeling with latent Dirichlet allocation (LDA). We also include a Jupyter Notebook illustrating how one can use LDA to analyze this dataset and extract latent topics from it, as well as analyze the rise and fall of those topics over the history of the journal.

    The articles were downloaded and scraped in December of 2019. Only non-duplicate articles with a listed author (according to the CrossRef metadata database) were included, and due to missing data and text recognition issues we excluded all articles published prior to 1922. This resulted in 5577 articles in total being included in the dataset. The text of these articles was then cleaned in the following way:

    We removed duplicated text from each article: prior to 1969, articles in the journal were published in a magazine format in which the end of one article and the beginning of the next would share the same page, so we developed an automated detection of article beginnings and endings that was able to remove any duplicate text.

    We removed the reference sections of the articles, as well headings (in all caps) such as “ABSTRACT”.

    We reunited any partial words that were separated due to line breaks, text recognition issues, or British vs. American spellings (for example converting “per cent” to “percent”)

    We removed all numbers, symbols, special characters, and punctuation, and lowercased all words.

    We removed all stop words, which are words without any semantic meaning on their own—“the”, “in,” “if”, “and”, “but”, etc.—and all single-letter words.

    We lemmatized all words, with the added step of including a part-of-speech tagger so our algorithm would only aggregate and lemmatize words from the same part of speech (e.g., nouns vs. verbs).

    We detected and create bi-grams, sets of words that frequently co-occur and carry additional meaning together. These words were combined with an underscore: for example, “problem_solving” and “high_school”.

    After filtering, each document was then turned into a list of individual words (or tokens) which were then collected and saved (using the python pickle format) into the file scied_words_bigrams_V5.pkl.

    In addition to this file, we have also included the following files:

    SciEd_paper_names_weights.pkl: A file containing limited metadata (title, author, year published, and DOI) for each of the papers, in the same order as they appear within the main datafile. This file also includes the weights assigned by an LDA model used to analyze the data

    Science Education LDA Notebook.ipynb: A notebook file that replicates our LDA analysis, with a written explanation of all of the steps and suggestions on how to explore the results.

    Supporting files for the notebook. These include the requirements, the README, a helper script with functions for plotting that were too long to include in the notebook, and two HTML graphs that are embedded into the notebook.

    This dataset is shared under the terms of the Wiley Text and Data Mining Agreement, which allows users to share text and data mining output for non-commercial research purposes. Any questions or comments can be directed to Tor Ole Odden, t.o.odden@fys.uio.no.

  15. Data from: A Large-Scale Dataset of Twitter Chatter about Online Learning...

    • zenodo.org
    • dataverse.harvard.edu
    • +1more
    txt
    Updated Aug 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur; Nirmalya Thakur (2022). A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave [Dataset]. http://doi.org/10.5281/zenodo.6837118
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 10, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nirmalya Thakur; Nirmalya Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite the following paper when using this dataset:

    N. Thakur, “A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave,” Journal of Data, vol. 7, no. 8, p. 109, Aug. 2022, doi: 10.3390/data7080109

    Abstract

    The COVID-19 Omicron variant, reported to be the most immune evasive variant of COVID-19, is resulting in a surge of COVID-19 cases globally. This has caused schools, colleges, and universities in different parts of the world to transition to online learning. As a result, social media platforms such as Twitter are seeing an increase in conversations, centered around information seeking and sharing, related to online learning. Mining such conversations, such as Tweets, to develop a dataset can serve as a data resource for interdisciplinary research related to the analysis of interest, views, opinions, perspectives, attitudes, and feedback towards online learning during the current surge of COVID-19 cases caused by the Omicron variant. Therefore this work presents a large-scale public Twitter dataset of conversations about online learning since the first detected case of the COVID-19 Omicron variant in November 2021. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter and the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.

    Data Description

    The dataset comprises a total of 52,984 Tweet IDs (that correspond to the same number of Tweets) about online learning that were posted on Twitter from 9th November 2021 to 13th July 2022. The earliest date was selected as 9th November 2021, as the Omicron variant was detected for the first time in a sample that was collected on this date. 13th July 2022 was the most recent date as per the time of data collection and publication of this dataset.

    The dataset consists of 9 .txt files. An overview of these dataset files along with the number of Tweet IDs and the date range of the associated tweets is as follows. Table 1 shows the list of all the synonyms or terms that were used for the dataset development.

    • Filename: TweetIDs_November_2021.txt (No. of Tweet IDs: 1283, Date Range of the associated Tweet IDs: November 1, 2021 to November 30, 2021)
    • Filename: TweetIDs_December_2021.txt (No. of Tweet IDs: 10545, Date Range of the associated Tweet IDs: December 1, 2021 to December 31, 2021)
    • Filename: TweetIDs_January_2022.txt (No. of Tweet IDs: 23078, Date Range of the associated Tweet IDs: January 1, 2022 to January 31, 2022)
    • Filename: TweetIDs_February_2022.txt (No. of Tweet IDs: 4751, Date Range of the associated Tweet IDs: February 1, 2022 to February 28, 2022)
    • Filename: TweetIDs_March_2022.txt (No. of Tweet IDs: 3434, Date Range of the associated Tweet IDs: March 1, 2022 to March 31, 2022)
    • Filename: TweetIDs_April_2022.txt (No. of Tweet IDs: 3355, Date Range of the associated Tweet IDs: April 1, 2022 to April 30, 2022)
    • Filename: TweetIDs_May_2022.txt (No. of Tweet IDs: 3120, Date Range of the associated Tweet IDs: May 1, 2022 to May 31, 2022)
    • Filename: TweetIDs_June_2022.txt (No. of Tweet IDs: 2361, Date Range of the associated Tweet IDs: June 1, 2022 to June 30, 2022)
    • Filename: TweetIDs_July_2022.txt (No. of Tweet IDs: 1057, Date Range of the associated Tweet IDs: July 1, 2022 to July 13, 2022)

    The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used. For hydrating this dataset the Hydrator application (link to download and a step-by-step tutorial on how to use Hydrator) may be used.

    Table 1. List of commonly used synonyms, terms, and phrases for online learning and COVID-19 that were used for the dataset development

    Terminology

    List of synonyms and terms

    COVID-19

    Omicron, COVID, COVID19, coronavirus, coronaviruspandemic, COVID-19, corona, coronaoutbreak, omicron variant, SARS CoV-2, corona virus

    online learning

    online education, online learning, remote education, remote learning, e-learning, elearning, distance learning, distance education, virtual learning, virtual education, online teaching, remote teaching, virtual teaching, online class, online classes, remote class, remote classes, distance class, distance classes, virtual class, virtual classes, online course, online courses, remote course, remote courses, distance course, distance courses, virtual course, virtual courses, online school, virtual school, remote school, online college, online university, virtual college, virtual university, remote college, remote university, online lecture, virtual lecture, remote lecture, online lectures, virtual lectures, remote lectures

  16. Understanding in vivo Models of Depression: A Systematic Review - Records of...

    • zenodo.org
    txt
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandra Bannach-Brown; Jing Liao; Gregers Wegener; Malcolm R Macloed; Alexandra Bannach-Brown; Jing Liao; Gregers Wegener; Malcolm R Macloed (2020). Understanding in vivo Models of Depression: A Systematic Review - Records of Full Search [Dataset]. http://doi.org/10.5281/zenodo.151190
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexandra Bannach-Brown; Jing Liao; Gregers Wegener; Malcolm R Macloed; Alexandra Bannach-Brown; Jing Liao; Gregers Wegener; Malcolm R Macloed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Zenodo record outlines the full list of journal articles retrieved from the search string as well as a a subset of articles that have been screened by two independent human reviews and reconciled by a third independent screener.

    We carried out a search of 2 online databases for studies reporting animal models of depression. This search, carried out in May 2016, identified 70,365 unique publications (File: Depression-Dataset-SLIM-AllRecords.txt )

    Two independent investigators have, to date, screened 5749 of these publications for inclusion or exclusion and these publications form the dataset for this study (File: Updated-training-data.txt ).

    Several text-mining approaches will be developed for this depression literature search using the results from manual screening to train the machine, where machine-learning software set rules to automatically define each publication as included or excluded without the need for human screening. In this project, we seek to identify the best performing machine learning algorithm for this depression literature search. Performance is measured on sensitivity, specificity, and precision.

    Column Names in Datasets:

    Depression-Dataset-SLIM-AllRecords.txt - ID, Author, Year, Title, Journal, Volume, Issue, Pages, Abstract, URL, SetNumber

    Depression-Dataset-SLIM-DevelopmentTrainingSet.txt - ID, Author, Year, Title, Journal, Volume, Issue, Pages, Abstract, URL, Incl(1)/Excl(0)

    Updated-training-data.txt - ID, Author, Year, Title, Journal, Volume, Issue, Pages, Abstract, URL, Incl(1)/Excl(0)

  17. f

    Performance evaluation on adaptability dataset.

    • plos.figshare.com
    xls
    Updated Sep 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lanbo Liu; Lihong Wan (2024). Performance evaluation on adaptability dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0307221.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 6, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Lanbo Liu; Lihong Wan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the domain of adaptable educational environments, our study is dedicated to achieving three key objectives: forecasting the adaptability of student learning, predicting and evaluating student performance, and employing aspect-based sentiment analysis for nuanced insights into student feedback. Using a systematic approach, we commence with an extensive data preparation phase to ensure data quality, followed by applying efficient data balancing techniques to mitigate biases. By emphasizing higher education or educational data mining, feature extraction methods are used to uncover significant patterns in the data. The basis of our classification method is the robust WideResNeXT architecture, which has been further improved for maximum efficiency by hyperparameter tweaking using the simple Modified Jaya Optimization Method. The recommended WResNeXt-MJ model has emerged as a formidable contender, demonstrating exceptional performance measurements. The model has an average accuracy of 98%, a low log loss of 0.05%, and an extraordinary precision score of 98.4% across all datasets, demonstrating its efficacy in enhancing predictive capacity and accuracy in flexible learning environments. This work presents a comprehensive helpful approach and a contemporary model suitable for flexible learning environments. WResNeXt-MJ’s exceptional performance values underscore its capacity to enhance pupil achievement in global higher education significantly.

  18. A tabulation of features used in this study.

    • plos.figshare.com
    xls
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonard Tan; Ooi Kiang Tan; Chun Chau Sze; Wilson Wen Bin Goh (2023). A tabulation of features used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0274299.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Leonard Tan; Ooi Kiang Tan; Chun Chau Sze; Wilson Wen Bin Goh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A tabulation of features used in this study.

  19. f

    Variables description.

    • plos.figshare.com
    xls
    Updated Sep 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haishan Liu (2024). Variables description. [Dataset]. http://doi.org/10.1371/journal.pone.0310131.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Haishan Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The article explains the economic dynamics of the sports industry with adoption of deep learning algorithms and data mining methodology. Despite outstanding improvements in research of sports industry, a significant gap prevails with regard to proper quantification of economic benefits of this industry. Therefore, the current research is an attempt to filling this gap by proposing a specific economic model for the sports sector. This paper examines the data of sports industry covering the time span of 2012 to 2022 by using data mining technology for quantitative analyses. Deep learning algorithms and data mining techniques transform the gained information from sports industry databases into sophisticated economic models. The developed model then makes the efficient analysis of diverse datasets for underlying patterns and insights, crucial in realizing the economic trajectory of the industry. The findings of the study reveal the importance of sports industry for economic growth of China. Moreover, the application of deep learning algorithm highlights the importance of continuous learning and training on the economic data from the sports industry. It is, therefore, an entirely novel approach to build up an economic simulation framework using deep learning and data mining, tailored to the intricate dynamics of the sports industry.

  20. f

    Classification results with all data.

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Letícia Moreira Valle; Stefano Giacomazzi Dantas; Daniel Guerreiro e Silva; Ugo Silva Dias; Leonardo Monteiro Monasterio (2023). Classification results with all data. [Dataset]. http://doi.org/10.1371/journal.pone.0275282.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Letícia Moreira Valle; Stefano Giacomazzi Dantas; Daniel Guerreiro e Silva; Ugo Silva Dias; Leonardo Monteiro Monasterio
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Classification results with all data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
HOI Steven; Jialei WANG; Peilin ZHAO (2023). Library for Online Learning Algorithms (LIBOL) [Dataset]. http://doi.org/10.25440/smu.12062739.v1

Library for Online Learning Algorithms (LIBOL)

Explore at:
binAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
SMU Research Data Repository (RDR)
Authors
HOI Steven; Jialei WANG; Peilin ZHAO
License

https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html

Description

LIBOL is an open-source machine learning library that consists of a family of classical and state-of-the-art online learning algorithms for large-scale machine learning and data mining research. It includes two categories of online learning methods: regular linear online learning algorithms and kernel-based online learning algorithms.Related Publication: Hoi, S. C. H., Wang, J., & Zhao, P. (2014). LIBOL: A library for online learning algorithms. Journal of Machine Learning Research, 15 (1), 495-499. http://jmlr.org/papers/v15/hoi14a.html

Search
Clear search
Close search
Google apps
Main menu