100+ datasets found
  1. h

    example-space-to-dataset-json

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucain Pouget, example-space-to-dataset-json [Dataset]. https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json
    Explore at:
    Authors
    Lucain Pouget
    Description
  2. Store Sales json

    • kaggle.com
    zip
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Indi Ella (2024). Store Sales json [Dataset]. https://www.kaggle.com/datasets/indiella/store-sales-json
    Explore at:
    zip(5397153 bytes)Available download formats
    Dataset updated
    Jun 1, 2024
    Authors
    Indi Ella
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Dataset contains more than 50000 records of Sales and order data related to an online store.

  3. m

    Sample GeoJSON file

    • mygeodata.cloud
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Sample GeoJSON file [Dataset]. https://mygeodata.cloud/converter/asc-to-geojson
    Explore at:
    Dataset updated
    Jul 9, 2025
    Description

    Sample data in GeoJSON format available for download for testing purposes.

  4. h

    json_data_extraction

    • huggingface.co
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    paraloq analytics (2024). json_data_extraction [Dataset]. https://huggingface.co/datasets/paraloq/json_data_extraction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    paraloq analytics
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Diverse Restricted JSON Data Extraction

    Curated by: The paraloq analytics team.

      Uses
    

    Benchmark restricted JSON data extraction (text + JSON schema -> JSON instance) Fine-Tune data extraction model (text + JSON schema -> JSON instance) Fine-Tune JSON schema Retrieval model (text -> retriever -> most adequate JSON schema)

      Out-of-Scope Use
    

    Intended for research purposes only.

      Dataset Structure
    

    The data comes with the following fields:

    title: The… See the full description on the dataset page: https://huggingface.co/datasets/paraloq/json_data_extraction.

  5. Stackoverflow post sample data. JSON format

    • kaggle.com
    zip
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeong Hoon Lee (2021). Stackoverflow post sample data. JSON format [Dataset]. https://www.kaggle.com/jeonghoonlee0ljh/stackoverflow-post-sample-data-json-format
    Explore at:
    zip(28017615 bytes)Available download formats
    Dataset updated
    Apr 16, 2021
    Authors
    Jeong Hoon Lee
    Description

    Dataset

    This dataset was created by Jeong Hoon Lee

    Contents

  6. Inventory data for Pharmacy Website in JSON format

    • kaggle.com
    zip
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Priti Poddar (2024). Inventory data for Pharmacy Website in JSON format [Dataset]. https://www.kaggle.com/datasets/pritipoddar/inventory-data-for-pharmacy-website-in-json-format
    Explore at:
    zip(14761 bytes)Available download formats
    Dataset updated
    Oct 22, 2024
    Authors
    Priti Poddar
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    This dataset contains inventory data for a pharmacy e-commerce website in JSON format, designed for easy integration into MongoDB databases, making it ideal for MERN stack projects. It includes 10 fields:

    • drugName: Name of the drug
    • manufacturer: Drug manufacturer
    • image: URL of the product image
    • description: Detailed description of the drug
    • expiryDate: Expiry date of the drug
    • price: Price of the drug
    • sideEffects: Potential side effects
    • disclaimer: Important legal and medical disclaimers
    • category: Drug classification (e.g., pain relief, antibiotics)
    • countInStock: Quantity of the product available in stock

    This dataset is useful for developing pharmacy-related web applications, inventory management systems, or online medical stores using the MERN stack.

    Do not use for production-level purposes; use for project development only. Feel free to contribute if you find any mistakes or have suggestions.

  7. Sample JSON

    • kaggle.com
    zip
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neal Magee (2023). Sample JSON [Dataset]. https://www.kaggle.com/datasets/nealmagee/sample-json
    Explore at:
    zip(844 bytes)Available download formats
    Dataset updated
    Jun 5, 2023
    Authors
    Neal Magee
    Description

    Dataset

    This dataset was created by Neal Magee

    Contents

  8. d

    JSON example

    • dune.com
    Updated Aug 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    pistomat (2023). JSON example [Dataset]. https://dune.com/discover/content/popular?q=author%3Apistomat&resource-type=queries
    Explore at:
    Dataset updated
    Aug 11, 2023
    Authors
    pistomat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Blockchain data query: JSON example

  9. g

    Data from: JSON Dataset of Simulated Building Heat Control for System of...

    • gimi9.com
    • researchdata.se
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JSON Dataset of Simulated Building Heat Control for System of Systems Interoperability [Dataset]. https://gimi9.com/dataset/eu_https-doi-org-10-5878-1tv7-9x76/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Interoperability in systems-of-systems is a difficult problem due to the abundance of data standards and formats. Current approaches to interoperability rely on hand-made adapters or methods using ontological metadata. This dataset was created to facilitate research on data-driven interoperability solutions. The data comes from a simulation of a building heating system, and the messages sent within control systems-of-systems. For more information see attached data documentation. The data comes in two semicolon-separated (;) csv files, training.csv and test.csv. The train/test split is not random; training data comes from the first 80% of simulated timesteps, and the test data is the last 20%. There is no specific validation dataset, the validation data should instead be randomly selected from the training data. The simulation runs for as many time steps as there are outside temperature values available. The original SMHI data only samples once every hour, which we linearly interpolate to get one temperature sample every ten seconds. The data saved at each time step consists of 34 JSON messages (four per room and two temperature readings from the outside), 9 temperature values (one per room and outside), 8 setpoint values, and 8 actuator outputs. The data associated with each of those 34 JSON-messages is stored as a single row in the tables. This means that much data is duplicated, a choice made to make it easier to use the data. The simulation data is not meant to be opened and analyzed in spreadsheet software, it is meant for training machine learning models. It is recommended to open the data with the pandas library for Python, available at https://pypi.org/project/pandas/.

  10. Z

    Assessing the impact of hints in learning formal specification: Research...

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Macedo, Nuno; Cunha, Alcino; Campos, José Creissac; Sousa, Emanuel; Margolis, Iara (2024). Assessing the impact of hints in learning formal specification: Research artifact [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10450608
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    Centro de Computação Gráfica
    INESC TEC
    Authors
    Macedo, Nuno; Cunha, Alcino; Campos, José Creissac; Sousa, Emanuel; Margolis, Iara
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.

    Dataset

    The artifact contains the resources described below.

    Experiment resources

    The resources needed for replicating the experiment, namely in directory experiment:

    alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.

    alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.

    docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.

    api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.

    Experiment data

    The task database used in our application of the experiment, namely in directory data/experiment:

    Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.

    identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.

    Collected data

    Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:

    data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).

    data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).

    data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);

    detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.

    data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).

    participants.txt: the list of participant identifiers that have registered for the experiment.

    Analysis scripts

    The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:

    analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.

    requirements.r: An R script to install the required libraries for the analysis script.

    normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.

    normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.

    Dockerfile: Docker script to automate the analysis script from the collected data.

    Setup

    To replicate the experiment and the analysis of the results, only Docker is required.

    If you wish to manually replicate the experiment and collect your own data, you'll need to install:

    A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.

    If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:

    Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.

    R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.

    Usage

    Experiment replication

    This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.

    To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.

    cd experimentdocker-compose up

    This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.

    In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:

    Group N (no hints): http://localhost:3000/0CAN

    Group L (error locations): http://localhost:3000/CA0L

    Group E (counter-example): http://localhost:3000/350E

    Group D (error description): http://localhost:3000/27AD

    In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.

    Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.

    Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.

    After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:

    Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.

    Analysis of other applications of the experiment

    This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.

    The analysis script expects data in 4 CSV files,

  11. c

    Complete News Data Extracted from CNBC in JSON Format: Covering Business,...

    • crawlfeeds.com
    json, zip
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Complete News Data Extracted from CNBC in JSON Format: Covering Business, Finance, Technology, and Global Trends for Europe, US, and UK Audiences [Dataset]. https://crawlfeeds.com/datasets/complete-news-data-extracted-from-cnbc-in-json-format-covering-business-finance-technology-and-global-trends-for-europe-us-and-uk-audiences
    Explore at:
    zip, jsonAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Area covered
    United Kingdom, United States
    Description

    We have successfully extracted a comprehensive news dataset from CNBC, covering not only financial updates but also an extensive range of news categories relevant to diverse audiences in Europe, the US, and the UK. This dataset includes over 500,000 records, meticulously structured in JSON format for seamless integration and analysis.

    Diverse News Segments for In-Depth Analysis

    This extensive extraction spans multiple segments, such as:

    • Business and Market Analysis: Stay updated on major companies, mergers, and acquisitions.
    • Technology and Innovation: Explore developments in AI, cybersecurity, and digital transformation.
    • Economic Forecasts: Access insights into GDP, employment rates, inflation, and other economic indicators.
    • Geopolitical Developments: Understand the impact of political events and global trade dynamics on markets.
    • Personal Finance: Learn about saving strategies, investment tips, and real estate trends.

    Each record in the dataset is enriched with metadata tags, enabling precise filtering by region, sector, topic, and publication date.

    Why Choose This Dataset?

    The comprehensive news dataset provides real-time insights into global developments, corporate strategies, leadership changes, and sector-specific trends. Designed for media analysts, research firms, and businesses, it empowers users to perform:

    • Trend Analysis
    • Sentiment Analysis
    • Predictive Modeling

    Additionally, the JSON format ensures easy integration with analytics platforms for advanced processing.

    Access More News Datasets

    Looking for a rich repository of structured news data? Visit our news dataset collection to explore additional offerings tailored to your analysis needs.

    Sample Dataset Available

    To get a preview, check out the CSV sample of the CNBC economy articles dataset.

  12. d

    V2 Parse JSON String sample

    • dune.com
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    springzhang (2025). V2 Parse JSON String sample [Dataset]. https://dune.com/discover/content/relevant?q=author:springzhang&resource-type=queries
    Explore at:
    Dataset updated
    Apr 7, 2025
    Authors
    springzhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Blockchain data query: V2 Parse JSON String sample

  13. Data from: Food Recipes dataset

    • kaggle.com
    zip
    Updated Aug 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    samsatp (2021). Food Recipes dataset [Dataset]. https://www.kaggle.com/datasets/sathianpong/foodrecipe
    Explore at:
    zip(181170342 bytes)Available download formats
    Dataset updated
    Aug 31, 2021
    Authors
    samsatp
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by samsatp

    Released under CC0: Public Domain

    Contents

  14. employee_json

    • kaggle.com
    zip
    Updated Mar 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    prateek khandelwal (2024). employee_json [Dataset]. https://www.kaggle.com/datasets/khandelwal10iitj/employee-json
    Explore at:
    zip(302 bytes)Available download formats
    Dataset updated
    Mar 26, 2024
    Authors
    prateek khandelwal
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by prateek khandelwal

    Released under Apache 2.0

    Contents

  15. h

    json-training

    • huggingface.co
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Christian Zhou-Zheng (2024). json-training [Dataset]. https://huggingface.co/datasets/ChristianAzinn/json-training
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2024
    Authors
    Christian Zhou-Zheng
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    JSON Training Data

    The advent of tiny yet powerful models like Qwen2 0.5B and SmolLM 135M/360M that can feasibly be run on just about anything means there is a necessity for data to finetune these models on downstream tasks. In particular, these models fail spectacularly at structured data generation in JSON, and even frameworks that are meant to force JSON output get stuck repeating infinitely because the models just don't have a clue what they're being asked to do. I found there… See the full description on the dataset page: https://huggingface.co/datasets/ChristianAzinn/json-training.

  16. Clinicalcodes.org example JSON research object

    • figshare.com
    txt
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Springate; Evangelos Kontopantelis; Darren M Ashcroft; Iván Olier; Rosa Parisi; Edmore Chamapiwa; David Reeves (2016). Clinicalcodes.org example JSON research object [Dataset]. http://doi.org/10.6084/m9.figshare.1008900.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    David Springate; Evangelos Kontopantelis; Darren M Ashcroft; Iván Olier; Rosa Parisi; Edmore Chamapiwa; David Reeves
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example JSON research object output from www.clinicalcodes.org for clinical codes for a research article. see https://github.com/rOpenHealth/ClinicalCodes/tree/master/paper

  17. Extracted Schemas from the Life Sciences Linked Open Data Cloud

    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maulik Kamdar (2023). Extracted Schemas from the Life Sciences Linked Open Data Cloud [Dataset]. http://doi.org/10.6084/m9.figshare.12402425.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Maulik Kamdar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is related to the manuscript "An empirical meta-analysis of the life sciences linked open data on the web" published at Nature Scientific Data. If you use the dataset, please cite the manuscript as follows:Kamdar, M.R., Musen, M.A. An empirical meta-analysis of the life sciences linked open data on the web. Sci Data 8, 24 (2021). https://doi.org/10.1038/s41597-021-00797-yWe have extracted schemas from more than 80 publicly available biomedical linked data graphs in the Life Sciences Linked Open Data (LSLOD) cloud into an LSLOD schema graph and conduct an empirical meta-analysis to evaluate the extent of semantic heterogeneity across the LSLOD cloud. The dataset published here contains the following files:- The set of Linked Data Graphs from the LSLOD cloud from which schemas are extracted.- Refined Sets of extracted classes, object properties, data properties, and datatypes, shared across the Linked Data Graphs on LSLOD cloud. Where the schema element is reused from a Linked Open Vocabulary or an ontology, it is explicitly indicated.- The LSLOD Schema Graph, which contains all the above extracted schema elements interlinked with each other based on the underlying content. Sample instances and sample assertions are also provided along with broad level characteristics of the modeled content. The LSLOD Schema Graph is saved as a JSON Pickle File. To read the JSON object in this Pickle file use the Python command as follows:with open('LSLOD-Schema-Graph.json.pickle' , 'rb') as infile: x = pickle.load(infile, encoding='iso-8859-1')Check the Referenced Link for more details on this research, raw data files, and code references.

  18. I

    TerriaJS Map Catalog in JSON Format

    • ihp-wins.unesco.org
    • data.dev-wins.com
    json
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pablo Rojas (2025). TerriaJS Map Catalog in JSON Format [Dataset]. https://ihp-wins.unesco.org/dataset/terriajs-map-catalog-in-json-format
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset provided by
    Pablo Rojas
    Description

    This dataset contains a collection of JSON files used to configure map catalogs in TerriaJS, an interactive geospatial data visualization platform. The files include detailed configurations for services such as WMS, WFS, and other geospatial resources, enabling the integration and visualization of diverse datasets in a user-friendly web interface. This resource is ideal for developers, researchers, and professionals who wish to customize or implement interactive map catalogs in their own applications using TerriaJS.

  19. Sec Financial Statement Data in Json

    • kaggle.com
    zip
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Angular2guy (2025). Sec Financial Statement Data in Json [Dataset]. https://www.kaggle.com/datasets/wbqrmgmcia7lhhq/sec-financial-statement-data-in-json/code
    Explore at:
    zip(1343906358 bytes)Available download formats
    Dataset updated
    Jul 13, 2025
    Authors
    Angular2guy
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Data from 2010 Q1 to 2025 Q2

    The data is created with this Jupyter Notebook:

    The data format is documented in the Readme. The Sec data documentation can be found here.

    Json structure: {"quarter": "Q1", "country": "Italy", "data": {"cf": [{"value": 0, "concept": "A", "unit": "USD", "label": "B", "info": "C"}], "bs": [{"value": 0, "concept": "A", "unit": "USD", "label": "B", "info": "C"}], "ic": [{"value": 0, "concept": "A", "unit": "USD", "label": "B", "info": "C"}]}, "year": 0, "name": "B", "startDate": "2009-12-31", "endDate": "2010-12-30", "symbol": "GM", "city": "York"}

    An example Json: {"year": 2023, "data": {"cf": [{"value": -1834000000, "concept": "NetCashProvidedByUsedInFinancingActivities", "unit": "USD", "label": "Amount of cash inflow (outflow) from financing … Amount of cash inflow (outflow) from financing …", "info": "Net cash used in financing activities"}], "ic":[{"value": 1000000, "concept": "IncreaseDecreaseInDueFromRelatedParties", "unit": "USD", "label": "The increase (decrease) during the reporting pe… The increase (decrease) during the reporting pe…", "info": "Receivables from related parties"}], "bs": [{"value": 2779000000, "concept": "AccountsPayableCurrent", "unit": "USD", "label": "Carrying value as of the balance sheet date of … Carrying value as of the balance sheet date of …", "info": "Accounts payable"}]}, "quarter": "Q2", "city": "SANTA CLARA", "startDate": "2023-06-30", "name": "ADVANCED MICRO DEVICES INC", "endDate": "2023-09-29", "country": "US", "symbol": "AMD"}

  20. h

    openai-moderation-api-evaluation

    • huggingface.co
    Updated Aug 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Max Mathys (2024). openai-moderation-api-evaluation [Dataset]. https://huggingface.co/datasets/mmathys/openai-moderation-api-evaluation
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 22, 2024
    Authors
    Max Mathys
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Evaluation dataset for the paper "A Holistic Approach to Undesired Content Detection"

    The evaluation dataset data/samples-1680.jsonl.gz is the test set used in this paper. Each line contains information about one sample in a JSON object and each sample is labeled according to our taxonomy. The category label is a binary flag, but if it does not include in the JSON, it means we do not know the label.

    Category Label Definition

    sexual S Content meant to arouse sexual… See the full description on the dataset page: https://huggingface.co/datasets/mmathys/openai-moderation-api-evaluation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lucain Pouget, example-space-to-dataset-json [Dataset]. https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json

example-space-to-dataset-json

Wauplin/example-space-to-dataset-json

Explore at:
Authors
Lucain Pouget
Description
Search
Clear search
Close search
Google apps
Main menu