100+ datasets found
  1. h

    example-space-to-dataset-json

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucain Pouget, example-space-to-dataset-json [Dataset]. https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json
    Explore at:
    Authors
    Lucain Pouget
    Description
  2. O

    Sample of Drugs from QHP drug.json files

    • healthdata.demo.socrata.com
    csv, xlsx, xml
    Updated Apr 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Sample of Drugs from QHP drug.json files [Dataset]. https://healthdata.demo.socrata.com/CMS-Insurance-Plans/Sample-of-Drugs-from-QHP-drug-json-files/jaa8-k3k2
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 16, 2016
    Description
  3. h

    example-space-to-dataset-json

    • huggingface.co
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    t (2024). example-space-to-dataset-json [Dataset]. https://huggingface.co/datasets/taichi256/example-space-to-dataset-json
    Explore at:
    Dataset updated
    Jun 8, 2024
    Authors
    t
    Description

    taichi256/example-space-to-dataset-json dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. f

    Example outputs.

    • plos.figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Z. DeMaere; Aaron E. Darling (2023). Example outputs. [Dataset]. http://doi.org/10.1371/journal.pcbi.1008839.s005
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS Computational Biology
    Authors
    Matthew Z. DeMaere; Aaron E. Darling
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Aside from reporting quality results to the user via the console, an analysis run produces a quality report written to disk in both HTML and JSON formats. The create if either output format can be disabled. The JSON format files can be imported by MultiQC. This zip archive includes example results of both BAM and KMER modes, as well as the resulting MultiQC report. (ZIP)

  5. O

    Sample of Providers from QHP provider.json files

    • healthdata.demo.socrata.com
    csv, xlsx, xml
    Updated Apr 16, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Sample of Providers from QHP provider.json files [Dataset]. https://healthdata.demo.socrata.com/CMS-Insurance-Plans/Sample-of-Providers-from-QHP-provider-json-files/axbq-xnwy
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Apr 16, 2016
    Description
  6. JSON Repository

    • data.amerigeoss.org
    csv, geojson, json +1
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Humanitarian Data Exchange (2025). JSON Repository [Dataset]. https://data.amerigeoss.org/dataset/json-repository
    Explore at:
    csv(9901), csv(779), csv(462610), json(3411081), geojson(543777), geojson(545299), geojson(365288), json(1132925), geojson(366788), csv(177073), geojson(162605), json(2064743), json(520472), geojson(953043), geojson(886086), json(457832), geojson(222216), geojson(9124), csv(85982), geojson(164379), csv(457), csv(242), json(3401512), csv(669568), json(461423), json(876253), csv(6789), csv(536), json(640845), json(707249), csv(358964), geojson(135805), csv(4907), csv(177), json(327649), csv(9980), geojson(709673), geojson(54889), geojson(2396630), json(632081), topojson(2728099), csv(845984), geojson(178718), json(559095), json(1975854), geojson(74470), geojson(219728), geojson(1324722), json(3478518)Available download formats
    Dataset updated
    Jun 4, 2025
    Dataset provided by
    United Nationshttp://un.org/
    Description

    This dataset contains resources transformed from other datasets on HDX. They exist here only in a format modified to support visualization on HDX and may not be as up to date as the source datasets from which they are derived.

    Source datasets: https://data.hdx.rwlabs.org/dataset/idps-data-by-region-in-mali

  7. h

    json_data_extraction

    • huggingface.co
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    paraloq analytics (2024). json_data_extraction [Dataset]. https://huggingface.co/datasets/paraloq/json_data_extraction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    paraloq analytics
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Diverse Restricted JSON Data Extraction

    Curated by: The paraloq analytics team.

      Uses
    

    Benchmark restricted JSON data extraction (text + JSON schema -> JSON instance) Fine-Tune data extraction model (text + JSON schema -> JSON instance) Fine-Tune JSON schema Retrieval model (text -> retriever -> most adequate JSON schema)

      Out-of-Scope Use
    

    Intended for research purposes only.

      Dataset Structure
    

    The data comes with the following fields:

    title: The… See the full description on the dataset page: https://huggingface.co/datasets/paraloq/json_data_extraction.

  8. DataCite Public Data

    • redivis.com
    application/jsonl +7
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Redivis Demo Organization (2024). DataCite Public Data [Dataset]. https://redivis.com/datasets/7wec-6vgw8qaaq
    Explore at:
    application/jsonl, arrow, spss, csv, stata, sas, avro, parquetAvailable download formats
    Dataset updated
    Dec 12, 2024
    Dataset provided by
    Redivis Inc.
    Authors
    Redivis Demo Organization
    Description

    Abstract

    The DataCite Public Data File contains metadata records in JSON format for all DataCite DOIs in Findable state that were registered up to the end of 2023.

    This dataset represents a processed version of the Public Data File, where the data have been extracted and loaded into a Redivis dataset.

    Methodology

    The DataCite Public Data File contains metadata records in JSON format for all DataCite DOIs in Findable state that were registered up to the end of 2023.

    Records have descriptive metadata for research outputs and resources structured according to the DataCite Metadata Schema and include links to other persistent identifiers (PIDs) for works (DOIs), people (ORCID iDs), and organizations (ROR IDs).

    Use of the DataCite Public Data File is subject to the DataCite Data File Use Policy.

    Usage

    This datasets is a processed version of the DataCite public data file, where the original file (a 23GB .tar.gz) has been extracted into 55,239 JSONL files, that were then concatenated into a single JSONL file.

    This JSONL file has been imported into a Redivis table to facilitate further exploration and analysis.

    A sample project demonstrating how to query the DataCite data file can be found here: https://redivis.com/projects/hx1e-a6w8vmwsx

  9. F# Data: Making structured data first-class

    • figshare.com
    bin
    Updated Jan 19, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomas Petricek (2016). F# Data: Making structured data first-class [Dataset]. http://doi.org/10.6084/m9.figshare.1169941.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 19, 2016
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Tomas Petricek
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accessing data in structured formats such as XML, CSV and JSON in statically typed languages is difficult, because the languages do not understand the structure of the data. Dynamically typed languages make this syntactically easier, but lead to error-prone code. Despite numerous efforts, most of the data available on the web do not come with a schema. The only information available to developers is a set of examples, such as typical server responses. We describe an inference algorithm that infers a type of structured formats including CSV, XML and JSON. The algorithm is based on finding a common supertype of types representing individual samples (or values in collections). We use the algorithm as a basis for an F# type provider that integrates the inference into the F# type system. As a result, users can access CSV, XML and JSON data in a statically-typed fashion just by specifying a representative sample document.

  10. g

    Data from: JSON Dataset of Simulated Building Heat Control for System of...

    • gimi9.com
    • researchdata.se
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JSON Dataset of Simulated Building Heat Control for System of Systems Interoperability [Dataset]. https://gimi9.com/dataset/eu_https-doi-org-10-5878-1tv7-9x76/
    Explore at:
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Interoperability in systems-of-systems is a difficult problem due to the abundance of data standards and formats. Current approaches to interoperability rely on hand-made adapters or methods using ontological metadata. This dataset was created to facilitate research on data-driven interoperability solutions. The data comes from a simulation of a building heating system, and the messages sent within control systems-of-systems. For more information see attached data documentation. The data comes in two semicolon-separated (;) csv files, training.csv and test.csv. The train/test split is not random; training data comes from the first 80% of simulated timesteps, and the test data is the last 20%. There is no specific validation dataset, the validation data should instead be randomly selected from the training data. The simulation runs for as many time steps as there are outside temperature values available. The original SMHI data only samples once every hour, which we linearly interpolate to get one temperature sample every ten seconds. The data saved at each time step consists of 34 JSON messages (four per room and two temperature readings from the outside), 9 temperature values (one per room and outside), 8 setpoint values, and 8 actuator outputs. The data associated with each of those 34 JSON-messages is stored as a single row in the tables. This means that much data is duplicated, a choice made to make it easier to use the data. The simulation data is not meant to be opened and analyzed in spreadsheet software, it is meant for training machine learning models. It is recommended to open the data with the pandas library for Python, available at https://pypi.org/project/pandas/.

  11. c

    Complete News Data Extracted from CNBC in JSON Format: Covering Business,...

    • crawlfeeds.com
    json, zip
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). Complete News Data Extracted from CNBC in JSON Format: Covering Business, Finance, Technology, and Global Trends for Europe, US, and UK Audiences [Dataset]. https://crawlfeeds.com/datasets/complete-news-data-extracted-from-cnbc-in-json-format-covering-business-finance-technology-and-global-trends-for-europe-us-and-uk-audiences
    Explore at:
    zip, jsonAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Area covered
    United Kingdom, United States
    Description

    We have successfully extracted a comprehensive news dataset from CNBC, covering not only financial updates but also an extensive range of news categories relevant to diverse audiences in Europe, the US, and the UK. This dataset includes over 500,000 records, meticulously structured in JSON format for seamless integration and analysis.

    Diverse News Segments for In-Depth Analysis

    This extensive extraction spans multiple segments, such as:

    • Business and Market Analysis: Stay updated on major companies, mergers, and acquisitions.
    • Technology and Innovation: Explore developments in AI, cybersecurity, and digital transformation.
    • Economic Forecasts: Access insights into GDP, employment rates, inflation, and other economic indicators.
    • Geopolitical Developments: Understand the impact of political events and global trade dynamics on markets.
    • Personal Finance: Learn about saving strategies, investment tips, and real estate trends.

    Each record in the dataset is enriched with metadata tags, enabling precise filtering by region, sector, topic, and publication date.

    Why Choose This Dataset?

    The comprehensive news dataset provides real-time insights into global developments, corporate strategies, leadership changes, and sector-specific trends. Designed for media analysts, research firms, and businesses, it empowers users to perform:

    • Trend Analysis
    • Sentiment Analysis
    • Predictive Modeling

    Additionally, the JSON format ensures easy integration with analytics platforms for advanced processing.

    Access More News Datasets

    Looking for a rich repository of structured news data? Visit our news dataset collection to explore additional offerings tailored to your analysis needs.

    Sample Dataset Available

    To get a preview, check out the CSV sample of the CNBC economy articles dataset.

  12. Z

    Data from: 3DHD CityScenes: High-Definition Maps in High-Density Point...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fricke, Jenny (2024). 3DHD CityScenes: High-Definition Maps in High-Density Point Clouds [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7085089
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Fricke, Jenny
    Fingscheidt, Tim
    Plachetka, Christopher
    Sertolli, Benjamin
    Klingner, Marvin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview

    3DHD CityScenes is the most comprehensive, large-scale high-definition (HD) map dataset to date, annotated in the three spatial dimensions of globally referenced, high-density LiDAR point clouds collected in urban domains. Our HD map covers 127 km of road sections of the inner city of Hamburg, Germany including 467 km of individual lanes. In total, our map comprises 266,762 individual items.

    Our corresponding paper (published at ITSC 2022) is available here. Further, we have applied 3DHD CityScenes to map deviation detection here.

    Moreover, we release code to facilitate the application of our dataset and the reproducibility of our research. Specifically, our 3DHD_DevKit comprises:

    Python tools to read, generate, and visualize the dataset,

    3DHDNet deep learning pipeline (training, inference, evaluation) for map deviation detection and 3D object detection.

    The DevKit is available here:

    https://github.com/volkswagen/3DHD_devkit.

    The dataset and DevKit have been created by Christopher Plachetka as project lead during his PhD period at Volkswagen Group, Germany.

    When using our dataset, you are welcome to cite:

    @INPROCEEDINGS{9921866, author={Plachetka, Christopher and Sertolli, Benjamin and Fricke, Jenny and Klingner, Marvin and Fingscheidt, Tim}, booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)}, title={3DHD CityScenes: High-Definition Maps in High-Density Point Clouds}, year={2022}, pages={627-634}}

    Acknowledgements

    We thank the following interns for their exceptional contributions to our work.

    Benjamin Sertolli: Major contributions to our DevKit during his master thesis

    Niels Maier: Measurement campaign for data collection and data preparation

    The European large-scale project Hi-Drive (www.Hi-Drive.eu) supports the publication of 3DHD CityScenes and encourages the general publication of information and databases facilitating the development of automated driving technologies.

    The Dataset

    After downloading, the 3DHD_CityScenes folder provides five subdirectories, which are explained briefly in the following.

    1. Dataset

    This directory contains the training, validation, and test set definition (train.json, val.json, test.json) used in our publications. Respective files contain samples that define a geolocation and the orientation of the ego vehicle in global coordinates on the map.

    During dataset generation (done by our DevKit), samples are used to take crops from the larger point cloud. Also, map elements in reach of a sample are collected. Both modalities can then be used, e.g., as input to a neural network such as our 3DHDNet.

    To read any JSON-encoded data provided by 3DHD CityScenes in Python, you can use the following code snipped as an example.

    import json

    json_path = r"E:\3DHD_CityScenes\Dataset\train.json" with open(json_path) as jf: data = json.load(jf) print(data)

    1. HD_Map

    Map items are stored as lists of items in JSON format. In particular, we provide:

    traffic signs,

    traffic lights,

    pole-like objects,

    construction site locations,

    construction site obstacles (point-like such as cones, and line-like such as fences),

    line-shaped markings (solid, dashed, etc.),

    polygon-shaped markings (arrows, stop lines, symbols, etc.),

    lanes (ordinary and temporary),

    relations between elements (only for construction sites, e.g., sign to lane association).

    1. HD_Map_MetaData

    Our high-density point cloud used as basis for annotating the HD map is split in 648 tiles. This directory contains the geolocation for each tile as polygon on the map. You can view the respective tile definition using QGIS. Alternatively, we also provide respective polygons as lists of UTM coordinates in JSON.

    Files with the ending .dbf, .prj, .qpj, .shp, and .shx belong to the tile definition as “shape file” (commonly used in geodesy) that can be viewed using QGIS. The JSON file contains the same information provided in a different format used in our Python API.

    1. HD_PointCloud_Tiles

    The high-density point cloud tiles are provided in global UTM32N coordinates and are encoded in a proprietary binary format. The first 4 bytes (integer) encode the number of points contained in that file. Subsequently, all point cloud values are provided as arrays. First all x-values, then all y-values, and so on. Specifically, the arrays are encoded as follows.

    x-coordinates: 4 byte integer

    y-coordinates: 4 byte integer

    z-coordinates: 4 byte integer

    intensity of reflected beams: 2 byte unsigned integer

    ground classification flag: 1 byte unsigned integer

    After reading, respective values have to be unnormalized. As an example, you can use the following code snipped to read the point cloud data. For visualization, you can use the pptk package, for instance.

    import numpy as np import pptk

    file_path = r"E:\3DHD_CityScenes\HD_PointCloud_Tiles\HH_001.bin" pc_dict = {} key_list = ['x', 'y', 'z', 'intensity', 'is_ground'] type_list = ['

  13. SAE sample data (JSON)

    • springernature.figshare.com
    json
    Updated Jan 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jian Du; XUANYU SHI (2024). SAE sample data (JSON) [Dataset]. http://doi.org/10.6084/m9.figshare.24633672.v1
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jan 2, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Jian Du; XUANYU SHI
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SAE sample data (JSON)

  14. Clinicalcodes.org example JSON research object

    • figshare.com
    txt
    Updated Jan 18, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Springate; Evangelos Kontopantelis; Darren M Ashcroft; Iván Olier; Rosa Parisi; Edmore Chamapiwa; David Reeves (2016). Clinicalcodes.org example JSON research object [Dataset]. http://doi.org/10.6084/m9.figshare.1008900.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    David Springate; Evangelos Kontopantelis; Darren M Ashcroft; Iván Olier; Rosa Parisi; Edmore Chamapiwa; David Reeves
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Example JSON research object output from www.clinicalcodes.org for clinical codes for a research article. see https://github.com/rOpenHealth/ClinicalCodes/tree/master/paper

  15. O

    Sample of Plans from QHP plan.json files

    • healthdata.demo.socrata.com
    csv, xlsx, xml
    Updated Apr 17, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Sample of Plans from QHP plan.json files [Dataset]. https://healthdata.demo.socrata.com/CMS-Insurance-Plans/Sample-of-Plans-from-QHP-plan-json-files/x6bt-9iym
    Explore at:
    csv, xlsx, xmlAvailable download formats
    Dataset updated
    Apr 17, 2016
    Description
  16. e

    Text content of the Frequently Asked Questions “business info COVID19”

    • data.europa.eu
    json
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direction Générale des Entreprises (2024). Text content of the Frequently Asked Questions “business info COVID19” [Dataset]. https://data.europa.eu/88u/dataset/5ec3a046c9e9abed50d770a9
    Explore at:
    json(366118)Available download formats
    Dataset updated
    Sep 1, 2024
    Dataset authored and provided by
    Direction Générale des Entreprises
    License

    https://www.etalab.gouv.fr/licence-ouverte-open-licencehttps://www.etalab.gouv.fr/licence-ouverte-open-licence

    Description

    Frequently Asked Questions for Business in the COVID-19 Context

    This dataset contains the articles published on the Covid-19 FAQ for companies published by the Directorate-General for Enterprises at https://info-entreprises-covid19.economie.fr

    The data are presented in the JSON format as follows: JSON [ { “title”: “Example article for documentation”, “content”: [ this is the first page of the article. here the second, “‘div’these articles incorporate some HTML formatting‘/div’” ], “path”: [ “File to visit in the FAQ”, “to join the article”] }, ... ] “'” The update is done every day at 6:00 UTC. This data is extracted directly from the site, the source code of the script used to extract the data is available here: https://github.com/chrnin/docCovidDGE

  17. Json file from Twitter API used for benchmarking Jsonpath

    • zenodo.org
    • data.niaid.nih.gov
    json
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles Paperman; Charles Paperman (2022). Json file from Twitter API used for benchmarking Jsonpath [Dataset]. http://doi.org/10.5281/zenodo.7225577
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Oct 19, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Charles Paperman; Charles Paperman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A JSON file used as an example to illustrate queries and to benchmark some tool.

  18. o

    "workspace.json" of "Measurement of $t$-channel production of single top...

    • explore.openaire.eu
    Updated Jan 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ATLAS Collaboration (2024). "workspace.json" of "Measurement of $t$-channel production of single top quarks and antiquarks in $pp$ collisions at 13 TeV using the full ATLAS Run 2 data sample" [Dataset]. http://doi.org/10.17182/hepdata.150693.v1/r1
    Explore at:
    Dataset updated
    Jan 1, 2024
    Authors
    ATLAS Collaboration
    Description
    • CERN-LHC. The production of single top quarks and top antiquarks via the $t$-channel exchange of a virtual $W$ boson are measured in proton--proton collisions at a centre-of-mass energy of 13 TeV at the LHC. The full Run 2 dataset recorded with the ATLAS detector in the years 2015--2018 is used. The total cross-sections are determined to be $\sigma(tq)=137^{+8}_{-8}\,\mathrm{pb}$ and $\sigma(\bar{t}q)=84^{+6}_{-5}\,\mathrm{pb}$ for top-quark and top-antiquark production, respectively. The combined cross-section is found to be $\sigma(tq+\bar{t}q)=221^{+13}_{-13}\,\mathrm{pb}$ and the cross-section ratio is $R_{t}=\sigma(tq)/\sigma(\bar{t}q)=1.636^{+0.036}_{-0.034}$. The measured cross-sections are in good agreement with predictions made at next-to-next-to-leading order in quantum chromodynamics. The predicted value of $R_{t}$ using different sets of parton distribution functions is compared to the measured value, demonstrating the potential to further constrain the functions when using this result in global fits. The measurements of $\sigma(tq)$, $\sigma(\bar{t}q)$, and $\sigma(tq+\bar{t}q)$ are interpreted in an effective field theory approach, setting limits at the 95\% confidence level on the strength of a four-quark operator and an operator coupling the third quark generation to the Higgs boson doublet: $-0.37 < C_{qQ}^{(1,3)}/\Lambda^2 < 0.06$ and $-0.87 < C_{\phi Q}^{(3)}/\Lambda^2 < 1.42$. The measured total cross-section is further used to derive the constraint $|V_{tb}|>0.95$ at the 95% confidence level. In a more general approach, pairs of CKM matrix elements involving top quarks are simultaneously constrained, leading to confidence contours in the corresponding two-dimensional parameter spaces. Full likelihood in the HistFactory JSON format described in ATL-PHYS-PUB-2019-029
  19. Data from: Food Recipes dataset

    • kaggle.com
    Updated Aug 31, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    samsatp (2021). Food Recipes dataset [Dataset]. https://www.kaggle.com/datasets/sathianpong/foodrecipe
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 31, 2021
    Dataset provided by
    Kaggle
    Authors
    samsatp
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by samsatp

    Released under CC0: Public Domain

    Contents

  20. Extracted Schemas from the Life Sciences Linked Open Data Cloud

    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maulik Kamdar (2023). Extracted Schemas from the Life Sciences Linked Open Data Cloud [Dataset]. http://doi.org/10.6084/m9.figshare.12402425.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Maulik Kamdar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is related to the manuscript "An empirical meta-analysis of the life sciences linked open data on the web" published at Nature Scientific Data. If you use the dataset, please cite the manuscript as follows:Kamdar, M.R., Musen, M.A. An empirical meta-analysis of the life sciences linked open data on the web. Sci Data 8, 24 (2021). https://doi.org/10.1038/s41597-021-00797-yWe have extracted schemas from more than 80 publicly available biomedical linked data graphs in the Life Sciences Linked Open Data (LSLOD) cloud into an LSLOD schema graph and conduct an empirical meta-analysis to evaluate the extent of semantic heterogeneity across the LSLOD cloud. The dataset published here contains the following files:- The set of Linked Data Graphs from the LSLOD cloud from which schemas are extracted.- Refined Sets of extracted classes, object properties, data properties, and datatypes, shared across the Linked Data Graphs on LSLOD cloud. Where the schema element is reused from a Linked Open Vocabulary or an ontology, it is explicitly indicated.- The LSLOD Schema Graph, which contains all the above extracted schema elements interlinked with each other based on the underlying content. Sample instances and sample assertions are also provided along with broad level characteristics of the modeled content. The LSLOD Schema Graph is saved as a JSON Pickle File. To read the JSON object in this Pickle file use the Python command as follows:with open('LSLOD-Schema-Graph.json.pickle' , 'rb') as infile: x = pickle.load(infile, encoding='iso-8859-1')Check the Referenced Link for more details on this research, raw data files, and code references.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Lucain Pouget, example-space-to-dataset-json [Dataset]. https://huggingface.co/datasets/Wauplin/example-space-to-dataset-json

example-space-to-dataset-json

Wauplin/example-space-to-dataset-json

Explore at:
Authors
Lucain Pouget
Description
Search
Clear search
Close search
Google apps
Main menu