100+ datasets found
  1. Meta Kaggle Prize Money

    • kaggle.com
    Updated Jul 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JohnM (2023). Meta Kaggle Prize Money [Dataset]. https://www.kaggle.com/jpmiller/meta-kaggle-moneyboard/activity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 26, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    JohnM
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    NEW: leaderboard.csv with lifetime earnings for all Kagglers

    Have you ever wondered how much prize money gets distributed through Kaggle competitions? Or how much top earners have won? Here's the data to help answer such questions. Money awarded for each competition is itemized by leaderboard rank and matched with the teams/users at that rank. It's assumed that teams evenly split their winnings among members.

    The dataset captures nearly $16M total prize money awarded for top leaderboard finishes. Prize breakdowns were taken from Kaggle web pages. Pages and prize descriptions had many different page formats/wording, especially before 2017, so coverage prior to that time is incomplete.

    Amounts here reflect the data contained in Meta-Kaggle and as such don't account for the following occurrences: - Milestone prizes - Efficiency awards - Non-cash prizes - Teams in the money zone that didn't qualify - Unequal distributions within teams

    Last update: July 8, 2023.

  2. home data for ml course

    • kaggle.com
    zip
    Updated Aug 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julián Pérez Pesce (2019). home data for ml course [Dataset]. https://www.kaggle.com/datasets/estrotococo/home-data-for-ml-course
    Explore at:
    zip(199207 bytes)Available download formats
    Dataset updated
    Aug 27, 2019
    Authors
    Julián Pérez Pesce
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Exercise: Machine Learning Competitions

    When you click on Run / All, the notebook will give you an error: "Files doesn't exist" With this DataSet you fix that. It's the same from DanB. Please UPVOTE!

    Enjoy!

  3. A

    ‘Kaggle Competitions Top 100’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Kaggle Competitions Top 100’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-kaggle-competitions-top-100-961d/latest
    Explore at:
    Dataset updated
    Feb 14, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Kaggle Competitions Top 100’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/vivovinco/kaggle-competitions-top-100 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    This dataset contains top 100 of Kaggle competitions ranking. The dataset will be updated every month.

    Content

    100 rows and 13 columns. Columns' description are listed below.

    • User : Name of the user
    • Tier : Grandmaster, Master or Expert
    • Company/School : Company/School info of the user if mentioned
    • Country : Country info of the user if mentioned
    • Competitions_Num : Number of competitions joined
    • Competitions_Gold : Number of competitions gold medals won
    • Competitions_Silver : Number of competitions silver medals won
    • Competitions_Bronze : Number of competitions bronze medals won
    • Datasets_Num : Number of public datasets
    • Notebooks_Num : Number of public notebooks
    • Discussions_Num : Number of topics/comments posted
    • Points : Total points
    • Profile : Link of Kaggle profile

    Acknowledgements

    Data from Kaggle. Image from Smartcat.

    If you're reading this, please upvote.

    --- Original source retains full ownership of the source dataset ---

  4. h

    Kaggle-LLM-Science-Exam

    • huggingface.co
    Updated Aug 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sangeetha Venkatesan (2023). Kaggle-LLM-Science-Exam [Dataset]. https://huggingface.co/datasets/Sangeetha/Kaggle-LLM-Science-Exam
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 8, 2023
    Authors
    Sangeetha Venkatesan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Card for [LLM Science Exam Kaggle Competition]

      Dataset Summary
    

    https://www.kaggle.com/competitions/kaggle-llm-science-exam/data

      Languages
    

    [en, de, tl, it, es, fr, pt, id, pl, ro, so, ca, da, sw, hu, no, nl, et, af, hr, lv, sl]

      Dataset Structure
    

    Columns prompt - the text of the question being asked A - option A; if this option is correct, then answer will be A B - option B; if this option is correct, then answer will be B C - option C; if this… See the full description on the dataset page: https://huggingface.co/datasets/Sangeetha/Kaggle-LLM-Science-Exam.

  5. h

    Eedi-competition-kaggle-prompt-formats-Phi

    • huggingface.co
    Updated Sep 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EVANGELOS PAPAMITSOS (2024). Eedi-competition-kaggle-prompt-formats-Phi [Dataset]. https://huggingface.co/datasets/VaggP/Eedi-competition-kaggle-prompt-formats-Phi
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2024
    Authors
    EVANGELOS PAPAMITSOS
    Description

    VaggP/Eedi-competition-kaggle-prompt-formats-Phi dataset hosted on Hugging Face and contributed by the HF Datasets community

  6. A

    ‘Kaggle Competitions Ranking’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Kaggle Competitions Ranking’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-kaggle-competitions-ranking-f15f/7682e95e/?iid=003-169&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Kaggle Competitions Ranking’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/vivovinco/kaggle-competitions-ranking on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    This dataset contains Kaggle ranking of competitions.

    Content

    5000 rows and 8 columns. Columns' description are listed below.

    • Rank : Rank of the user
    • Tier : Grandmaster, Master or Expert
    • Username : Name of the user
    • Join Date : Year of join
    • Gold Medals : Number of gold medals
    • Silver Medals : Number of silver medals
    • Bronze Medals : Number of bronze medals
    • Points : Total points

    Acknowledgements

    Data from Kaggle. Image from Olympics.

    If you're reading this, please upvote.

    --- Original source retains full ownership of the source dataset ---

  7. roberta-fine-tuned

    • kaggle.com
    Updated Aug 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thibaut Juill (2023). roberta-fine-tuned [Dataset]. https://www.kaggle.com/datasets/thibautjuill/roberta-fine-tuned
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 3, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Thibaut Juill
    Description

    Fine tuned model base on roberta-base : https://www.kaggle.com/datasets/abhishek/roberta-base

    This model was trained for CommonLit - Evaluate Student Summaries competition (https://www.kaggle.com/competitions/commonlit-evaluate-student-summaries/overview). Please follow the rules of the competition before use this model.

  8. r

    STAT 8051 Kaggle Competition Codebook - Group 4

    • rpubs.com
    Updated Dec 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Linh Nguyen (2020). STAT 8051 Kaggle Competition Codebook - Group 4 [Dataset]. https://rpubs.com/nguyenllpsych/stat8051
    Explore at:
    Dataset updated
    Dec 13, 2020
    Authors
    Linh Nguyen
    Variables measured
    area, dr_age, gender, veh_age, exposure, veh_body, claim_ind, veh_value, claim_cost, claim_count
    Description

    Basic summary statistics and codebook, excluding ID variable, for the training dataset from the 2020 Travelers Modeling Competition - Predicting Claim Cost

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    namelabeln_missing
    veh_valueMarket value of the vehicle in $10,000’s0
    exposureThe basic unit of risk underlying an insurance premium0
    veh_bodyType of vehicles0
    veh_ageAge of vehicles0
    genderGender of driver0
    areaDriving area of residence0
    dr_ageDriver’s age category0
    claim_indIndicator of claim0
    claim_countThe number of claims0
    claim_costClaim amount0

    Note

    This dataset was automatically described using the codebook R package (version 0.9.2).

  9. T

    wit_kaggle

    • tensorflow.org
    Updated Dec 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). wit_kaggle [Dataset]. https://www.tensorflow.org/datasets/catalog/wit_kaggle
    Explore at:
    Dataset updated
    Dec 22, 2022
    Description

    Wikipedia - Image/Caption Matching Kaggle Competition.

    This competition is organized by the Research team at the Wikimedia Foundation in collaboration with Google Research and a few external collaborators. This competition is based on the WIT dataset published by Google Research as detailed in thisSIGIR paper.

    In this competition, you’ll build a model that automatically retrieves the text closest to an image. Specifically, you'll train your model to associate given images with article titles or complex captions, in multiple languages. The best models will account for the semantic granularity of Wikipedia images. If successful, you'll be contributing to the accessibility of the largest online encyclopedia. The millions of Wikipedia readers and edietors will be able to more easily understand, search, and describe media at scale. As a result, you’ll contribute to an open model to improve learning for all.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('wit_kaggle', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/wit_kaggle-train_with_extended_features-1.0.2.png" alt="Visualization" width="500px">

  10. h

    BirdCLEF-Challenge2023-Kaggle

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bernardo Cecchetto, BirdCLEF-Challenge2023-Kaggle [Dataset]. https://huggingface.co/datasets/bernardocecchetto/BirdCLEF-Challenge2023-Kaggle
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Bernardo Cecchetto
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset contains audios of 264 species of birds singing that were all processed. It was processed as follows:

    Stereo to Mono Resampled 16kHz High Pass Filter (1500Hz and filter order of 16) Normalized

    The raw dataset was provided by the BirdCLEF 2023 challenge from Kaggle. You can access it in https://www.kaggle.com/competitions/birdclef-2023/data

  11. Code4ML 2.0

    • zenodo.org
    csv, txt
    Updated May 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonimous authors; Anonimous authors (2025). Code4ML 2.0 [Dataset]. http://doi.org/10.5281/zenodo.15465737
    Explore at:
    csv, txtAvailable download formats
    Dataset updated
    May 19, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonimous authors; Anonimous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is an enriched version of the Code4ML dataset, a large-scale corpus of annotated Python code snippets, competition summaries, and data descriptions sourced from Kaggle. The initial release includes approximately 2.5 million snippets of machine learning code extracted from around 100,000 Jupyter notebooks. A portion of these snippets has been manually annotated by human assessors through a custom-built, user-friendly interface designed for this task.

    The original dataset is organized into multiple CSV files, each containing structured data on different entities:

    • code_blocks.csv: Contains raw code snippets extracted from Kaggle.
    • kernels_meta.csv: Metadata for the notebooks (kernels) from which the code snippets were derived.
    • competitions_meta.csv: Metadata describing Kaggle competitions, including information about tasks and data.
    • markup_data.csv: Annotated code blocks with semantic types, allowing deeper analysis of code structure.
    • vertices.csv: A mapping from numeric IDs to semantic types and subclasses, used to interpret annotated code blocks.

    Table 1. code_blocks.csv structure

    ColumnDescription
    code_blocks_indexGlobal index linking code blocks to markup_data.csv.
    kernel_idIdentifier for the Kaggle Jupyter notebook from which the code block was extracted.
    code_block_id

    Position of the code block within the notebook.

    code_block

    The actual machine learning code snippet.

    Table 2. kernels_meta.csv structure

    ColumnDescription
    kernel_idIdentifier for the Kaggle Jupyter notebook.
    kaggle_scorePerformance metric of the notebook.
    kaggle_commentsNumber of comments on the notebook.
    kaggle_upvotesNumber of upvotes the notebook received.
    kernel_linkURL to the notebook.
    comp_nameName of the associated Kaggle competition.

    Table 3. competitions_meta.csv structure

    ColumnDescription
    comp_nameName of the Kaggle competition.
    descriptionOverview of the competition task.
    data_typeType of data used in the competition.
    comp_typeClassification of the competition.
    subtitleShort description of the task.
    EvaluationAlgorithmAbbreviationMetric used for assessing competition submissions.
    data_sourcesLinks to datasets used.
    metric typeClass label for the assessment metric.

    Table 4. markup_data.csv structure

    ColumnDescription
    code_blockMachine learning code block.
    too_longFlag indicating whether the block spans multiple semantic types.
    marksConfidence level of the annotation.
    graph_vertex_idID of the semantic type.

    The dataset allows mapping between these tables. For example:

    • code_blocks.csv can be linked to kernels_meta.csv via the kernel_id column.
    • kernels_meta.csv is connected to competitions_meta.csv through comp_name. To maintain quality, kernels_meta.csv includes only notebooks with available Kaggle scores.

    In addition, data_with_preds.csv contains automatically classified code blocks, with a mapping back to code_blocks.csvvia the code_blocks_index column.

    Code4ML 2.0 Enhancements

    The updated Code4ML 2.0 corpus introduces kernels extracted from Meta Kaggle Code. These kernels correspond to the kaggle competitions launched since 2020. The natural descriptions of the competitions are retrieved with the aim of LLM.

    Notebooks in kernels_meta2.csv may not have a Kaggle score but include a leaderboard ranking (rank), providing additional context for evaluation.

    competitions_meta_2.csv is enriched with data_cards, decsribing the data used in the competitions.

    Applications

    The Code4ML 2.0 corpus is a versatile resource, enabling training and evaluation of models in areas such as:

    • Code generation
    • Code understanding
    • Natural language processing of code-related tasks
  12. h

    olympiad-math-contest-llama3-20k

    • huggingface.co
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kevin Amiri (2024). olympiad-math-contest-llama3-20k [Dataset]. https://huggingface.co/datasets/kevin009/olympiad-math-contest-llama3-20k
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 1, 2024
    Authors
    Kevin Amiri
    Description

    AMC/AIME Mathematics Problem and Solution Dataset

      Dataset Details
    

    Dataset Name: AMC/AIME Mathematics Problem and Solution Dataset Version: 1.0 Release Date: 2024-06-1 Authors: Kevin Amiri

      Intended Use
    

    Primary Use: The dataset is created and intended for research and an AI Mathematical Olympiad Kaggle competition. Intended Users: Researchers in AI & mathematics or science.

      Dataset Composition
    

    Number of Examples: 20,300 problems and solution sets… See the full description on the dataset page: https://huggingface.co/datasets/kevin009/olympiad-math-contest-llama3-20k.

  13. JANE STREET PREPROCESSED

    • kaggle.com
    Updated Dec 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurabh Shahane (2020). JANE STREET PREPROCESSED [Dataset]. https://www.kaggle.com/datasets/saurabhshahane/jane-street-preprocessed-train
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 22, 2020
    Dataset provided by
    Kaggle
    Authors
    Saurabh Shahane
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Dataset

    This dataset was created by Saurabh Shahane

    Released under CC0: Public Domain

    Contents

  14. h

    cassava-leaf-disease-classification

    • huggingface.co
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pu Fanyi (2024). cassava-leaf-disease-classification [Dataset]. https://huggingface.co/datasets/pufanyi/cassava-leaf-disease-classification
    Explore at:
    Dataset updated
    Sep 23, 2024
    Authors
    Pu Fanyi
    Description

    This dataset is a Hugging Face version of the dataset in the Kaggle competition.

      Citation
    

    @misc{cassava-leaf-disease-classification, author = {ErnestMwebaze and Jesse Mostipak and Joyce and Julia Elliott and Sohier Dane}, title = {Cassava Leaf Disease Classification}, year = {2020}, howpublished = {\url{https://kaggle.com/competitions/cassava-leaf-disease-classification}}, note = {Kaggle} }

  15. t

    Evaluating FAIR Models for Rossmann Store Sales Prediction: Insights and...

    • test.researchdata.tuwien.ac.at
    bin, csv, json +1
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dilara Çakmak; Dilara Çakmak; Dilara Çakmak; Dilara Çakmak (2025). Evaluating FAIR Models for Rossmann Store Sales Prediction: Insights and Performance Analysis [Dataset]. http://doi.org/10.70124/f5t2d-xt904
    Explore at:
    csv, text/markdown, json, binAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Dilara Çakmak; Dilara Çakmak; Dilara Çakmak; Dilara Çakmak
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 2025
    Description

    Context and Methodology

    Research Domain:
    The dataset is part of a project focused on retail sales forecasting. Specifically, it is designed to predict daily sales for Rossmann, a chain of over 3,000 drug stores operating across seven European countries. The project falls under the broader domain of time series analysis and machine learning applications for business optimization. The goal is to apply machine learning techniques to forecast future sales based on historical data, which includes factors like promotions, competition, holidays, and seasonal trends.

    Purpose:
    The primary purpose of this dataset is to help Rossmann store managers predict daily sales for up to six weeks in advance. By making accurate sales predictions, Rossmann can improve inventory management, staffing decisions, and promotional strategies. This dataset serves as a training set for machine learning models aimed at reducing forecasting errors and supporting decision-making processes across the company’s large network of stores.

    How the Dataset Was Created:
    The dataset was compiled from several sources, including historical sales data from Rossmann stores, promotional calendars, holiday schedules, and external factors such as competition. The data is split into multiple features, such as the store's location, promotion details, whether the store was open or closed, and weather information. The dataset is publicly available on platforms like Kaggle and was initially created for the Kaggle Rossmann Store Sales competition. The data is made accessible via an API for further analysis and modeling, and it is structured to help machine learning models predict future sales based on various input variables.

    Technical Details

    Dataset Structure:

    The dataset consists of three main files, each with its specific role:

    1. Train:
      This file contains the historical sales data, which is used to train machine learning models. It includes daily sales information for each store, as well as various features that could influence the sales (e.g., promotions, holidays, store type, etc.).

      https://handle.test.datacite.org/10.82556/yb6j-jw41
      PID: b1c59499-9c6e-42c2-af8f-840181e809db
    2. Test2:
      The test dataset mirrors the structure of train.csv but does not include the actual sales values (i.e., the target variable). This file is used for making predictions using the trained machine learning models. It is used to evaluate the accuracy of predictions when the true sales data is unknown.

      https://handle.test.datacite.org/10.82556/jerg-4b84
      PID: 7cbb845c-21dd-4b60-b990-afa8754a0dd9
    3. Store:
      This file provides metadata about each store, including information such as the store’s location, type, and assortment level. This data is essential for understanding the context in which the sales data is gathered.

      https://handle.test.datacite.org/10.82556/nqeg-gy34
      PID: 9627ec46-4ee6-4969-b14a-bda555fe34db

    Data Fields Description:

    • Id: A unique identifier for each (Store, Date) combination within the test set.

    • Store: A unique identifier for each store.

    • Sales: The daily turnover (target variable) for each store on a specific day (this is what you are predicting).

    • Customers: The number of customers visiting the store on a given day.

    • Open: An indicator of whether the store was open (1 = open, 0 = closed).

    • StateHoliday: Indicates if the day is a state holiday, with values like:

      • 'a' = public holiday,

      • 'b' = Easter holiday,

      • 'c' = Christmas,

      • '0' = no holiday.

    • SchoolHoliday: Indicates whether the store is affected by school closures (1 = yes, 0 = no).

    • StoreType: Differentiates between four types of stores: 'a', 'b', 'c', 'd'.

    • Assortment: Describes the level of product assortment in the store:

      • 'a' = basic,

      • 'b' = extra,

      • 'c' = extended.

    • CompetitionDistance: Distance (in meters) to the nearest competitor store.

    • CompetitionOpenSince[Month/Year]: The month and year when the nearest competitor store opened.

    • Promo: Indicates whether the store is running a promotion on a particular day (1 = yes, 0 = no).

    • Promo2: Indicates whether the store is participating in Promo2, a continuing promotion for some stores (1 = participating, 0 = not participating).

    • Promo2Since[Year/Week]: The year and calendar week when the store started participating in Promo2.

    • PromoInterval: Describes the months when Promo2 is active, e.g., "Feb,May,Aug,Nov" means the promotion starts in February, May, August, and November.

    Software Requirements

    To work with this dataset, you will need to have specific software installed, including:

    • DBRepo Authorization: This is required to access the datasets via the DBRepo API. You may need to authenticate with an API key or login credentials to retrieve the datasets.

    • Python Libraries: Key libraries for working with the dataset include:

      • pandas for data manipulation,

      • numpy for numerical operations,

      • matplotlib and seaborn for data visualization,

      • scikit-learn for machine learning algorithms.

    Additional Resources

    Several additional resources are available for working with the dataset:

    1. Presentation:
      A presentation summarizing the exploratory data analysis (EDA), feature engineering process, and key insights from the analysis is provided. This presentation also includes visualizations that help in understanding the dataset’s trends and relationships.

    2. Jupyter Notebook:
      A Jupyter notebook, titled Retail_Sales_Prediction_Capstone_Project.ipynb, is provided, which details the entire machine learning pipeline, from data loading and cleaning to model training and evaluation.

    3. Model Evaluation Results:
      The project includes a detailed evaluation of various machine learning models, including their performance metrics like training and testing scores, Mean Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE). This allows for a comparison of model effectiveness in forecasting sales.

    4. Trained Models (.pkl files):
      The models trained during the project are saved as .pkl files. These files contain the trained machine learning models (e.g., Random Forest, Linear Regression, etc.) that can be loaded and used to make predictions without retraining the models from scratch.

    5. sample_submission.csv:
      This file is a sample submission file that demonstrates the format of predictions expected when using the trained model. The sample_submission.csv contains predictions made on the test dataset using the trained Random Forest model. It provides an example of how the output should be structured for submission.

    These resources provide a comprehensive guide to implementing and analyzing the sales forecasting model, helping you understand the data, methods, and results in greater detail.

  16. h

    astro-time-series

    • huggingface.co
    Updated Aug 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helen Qu (2023). astro-time-series [Dataset]. https://huggingface.co/datasets/helenqu/astro-time-series
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 16, 2023
    Authors
    Helen Qu
    Description

    Astronomical Time-Series Dataset

    This is the full dataset of astronomical time-series from the 2018 Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC) Kaggle competition. There are 18 types of astronomical sources represented, including transient phenomena (e.g. supernovae, kilonovae) and variable objects (e.g. active galactic nuclei, Mira variables). The original Kaggle competition can be found here. This note from the competition describes the dataset… See the full description on the dataset page: https://huggingface.co/datasets/helenqu/astro-time-series.

  17. LLM: 7 prompt training dataset

    • kaggle.com
    Updated Nov 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carl McBride Ellis (2023). LLM: 7 prompt training dataset [Dataset]. https://www.kaggle.com/datasets/carlmcbrideellis/llm-7-prompt-training-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 15, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Carl McBride Ellis
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description
    • Version 4: Adding the data from "LLM-generated essay using PaLM from Google Gen-AI" kindly generated by Kingki19 / Muhammad Rizqi.
      File: train_essays_RDizzl3_seven_v2.csv
      Human texts: 14247 LLM texts: 3004

      See also: a new dataset of an additional 4900 LLM generated texts: LLM: Mistral-7B Instruct texts



    • Version 3: "**The RDizzl3 Seven**"
      File: train_essays_RDizzl3_seven_v1.csv

    • "Car-free cities"

    • "Does the electoral college work?"

    • "Exploring Venus"

    • "The Face on Mars"

    • "Facial action coding system"

    • "A Cowboy Who Rode the Waves"

    • "Driverless cars"

    How this dataset was made: see the notebook "LLM: Make 7 prompt train dataset"

    • Version 2: (train_essays_7_prompts_v2.csv) This dataset is composed of 13,712 human texts and 1638 AI-LLM generated texts originating from 7 of the PERSUADE 2.0 corpus prompts.

    Namely:

    • "Car-free cities"
    • "Does the electoral college work?"
    • "Exploring Venus"
    • "The Face on Mars"
    • "Facial action coding system"
    • "Seeking multiple opinions"
    • "Phones and driving"

    This dataset is a derivative of the datasets

    as well as the original competition training dataset

    • Version 1:This dataset is composed of 13,712 human texts and 1165 AI-LLM generated texts originating from 7 of the PERSUADE 2.0 corpus prompts.
  18. t

    Kaggle Restaurant Reviews Dataset - Dataset - LDM

    • service.tib.eu
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Kaggle Restaurant Reviews Dataset - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/kaggle-restaurant-reviews-dataset
    Explore at:
    Dataset updated
    Nov 25, 2024
    Description

    The Kaggle sentiment analysis competition dataset contains unlabeled restaurant reviews used to supplement the labeled SemEval dataset for improved performance in sentiment analysis.

  19. FSDKaggle2018

    • zenodo.org
    • opendatalab.com
    • +1more
    zip
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eduardo Fonseca; Eduardo Fonseca; Xavier Favory; Jordi Pons; Frederic Font; Frederic Font; Manoj Plakal; Daniel P. W. Ellis; Daniel P. W. Ellis; Xavier Serra; Xavier Serra; Xavier Favory; Jordi Pons; Manoj Plakal (2020). FSDKaggle2018 [Dataset]. http://doi.org/10.5281/zenodo.2552860
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Eduardo Fonseca; Eduardo Fonseca; Xavier Favory; Jordi Pons; Frederic Font; Frederic Font; Manoj Plakal; Daniel P. W. Ellis; Daniel P. W. Ellis; Xavier Serra; Xavier Serra; Xavier Favory; Jordi Pons; Manoj Plakal
    Description

    FSDKaggle2018 is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology. FSDKaggle2018 has been used for the DCASE Challenge 2018 Task 2, which was run as a Kaggle competition titled Freesound General-Purpose Audio Tagging Challenge.

    Citation

    If you use the FSDKaggle2018 dataset or part of it, please cite our DCASE 2018 paper:

    Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Favory, Jordi Pons, Xavier Serra. "General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description, Dataset, and Baseline". Proceedings of the DCASE 2018 Workshop (2018)

    You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2018.

    Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017

    Contact

    You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.

    About this dataset

    Freesound Dataset Kaggle 2018 (or FSDKaggle2018 for short) is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology [1]. FSDKaggle2018 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2018. Please visit the DCASE2018 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound General-Purpose Audio Tagging Challenge. It was organized by researchers from the Music Technology Group of Universitat Pompeu Fabra, and from Google Research’s Machine Perception Team.

    The goal of this competition was to build an audio tagging system that can categorize an audio clip as belonging to one of a set of 41 diverse categories drawn from the AudioSet Ontology.

    All audio samples in this dataset are gathered from Freesound [2] and are provided here as uncompressed PCM 16 bit, 44.1 kHz, mono audio files. Note that because Freesound content is collaboratively contributed, recording quality and techniques can vary widely.

    The ground truth data provided in this dataset has been obtained after a data labeling process which is described below in the Data labeling process section. FSDKaggle2018 clips are unequally distributed in the following 41 categories of the AudioSet Ontology:

    "Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation", "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard", "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano", "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel", "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling", "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe", "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak", "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle", "Writing".

    Some other relevant characteristics of FSDKaggle2018:

    • The dataset is split into a train set and a test set.

    • The train set is meant to be for system development and includes ~9.5k samples unequally distributed among 41 categories. The minimum number of audio samples per category in the train set is 94, and the maximum 300. The duration of the audio samples ranges from 300ms to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording sounds. The total duration of the train set is roughly 18h.

    • Out of the ~9.5k samples from the train set, ~3.7k have manually-verified ground truth annotations and ~5.8k have non-verified annotations. The non-verified annotations of the train set have a quality estimate of at least 65-70% in each category. Checkout the Data labeling process section below for more information about this aspect.

    • Non-verified annotations in the train set are properly flagged in train.csv so that participants can opt to use this information during the development of their systems.

    • The test set is composed of 1.6k samples with manually-verified annotations and with a similar category distribution than that of the train set. The total duration of the test set is roughly 2h.

    • All audio samples in this dataset have a single label (i.e. are only annotated with one label). Checkout the Data labeling process section below for more information about this aspect. A single label should be predicted for each file in the test set.

    Data labeling process

    The data labeling process started from a manual mapping between Freesound tags and AudioSet Ontology categories (or labels), which was carried out by researchers at the Music Technology Group, Universitat Pompeu Fabra, Barcelona. Using this mapping, a number of Freesound audio samples were automatically annotated with labels from the AudioSet Ontology. These annotations can be understood as weak labels since they express the presence of a sound category in an audio sample.

    Then, a data validation process was carried out in which a number of participants did listen to the annotated sounds and manually assessed the presence/absence of an automatically assigned sound category, according to the AudioSet category description.

    Audio samples in FSDKaggle2018 are only annotated with a single ground truth label (see train.csv). A total of 3,710 annotations included in the train set of FSDKaggle2018 are annotations that have been manually validated as present and predominant (some with inter-annotator agreement but not all of them). This means that in most cases there is no additional acoustic material other than the labeled category. In few cases there may be some additional sound events, but these additional events won't belong to any of the 41 categories of FSDKaggle2018.

    The rest of the annotations have not been manually validated and therefore some of them could be inaccurate. Nonetheless, we have estimated that at least 65-70% of the non-verified annotations per category in the train set are indeed correct. It can happen that some of these non-verified audio samples present several sound sources even though only one label is provided as ground truth. These additional sources are typically out of the set of the 41 categories, but in a few cases they could be within.

    More details about the data labeling process can be found in [3].

    License

    FSDKaggle2018 has licenses at two different levels, as explained next.

    All sounds in Freesound are released under Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound. For attribution purposes and to facilitate attribution of these files to third parties, we include a relation of the audio clips included in FSDKaggle2018 and their corresponding license. The licenses are specified in the files train_post_competition.csv and test_post_competition_scoring_clips.csv.

    In addition, FSDKaggle2018 as a whole is the result of a curation process and it has an additional license. FSDKaggle2018 is released under CC-BY. This license is specified in the LICENSE-DATASET file downloaded with the FSDKaggle2018.doc zip file.

    Files

    FSDKaggle2018 can be downloaded as a series of zip files with the following directory structure:

    root
    │
    └───FSDKaggle2018.audio_train/ Audio clips in the train set │
    └───FSDKaggle2018.audio_test/ Audio clips in the test set │
    └───FSDKaggle2018.meta/ Files for evaluation setup │ │
    │ └───train_post_competition.csv Data split and ground truth for the train set │ │
    │ └───test_post_competition_scoring_clips.csv Ground truth for the test set

    └───FSDKaggle2018.doc/ │
    └───README.md The dataset description file you are reading │
    └───LICENSE-DATASET

  20. mlcourse.ai - Dota 2 - winner prediction Dataset

    • kaggle.com
    zip
    Updated Sep 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sushma Biswas (2019). mlcourse.ai - Dota 2 - winner prediction Dataset [Dataset]. https://www.kaggle.com/datasets/sushmabiswas/mlcourseai-dota-2-winner-prediction-dataset
    Explore at:
    zip(759868828 bytes)Available download formats
    Dataset updated
    Sep 8, 2019
    Authors
    Sushma Biswas
    Description

    Context

    Hello! I am currently taking the mlcourse.ai course and as part of one of it's in-class Kaggle competitions, this dataset was required. The data is originally hosted on git but I like to have my data right here on Kaggle. That's why this dataset.

    If you find this dataset useful, do upvote. Thank you and happy learning!

    Content

    This dataset contains 6 files in total. 1. Sample_submission.csv 2. Train_features.csv 3. Test_features.csv 4. Train_targets.csv 5. Train_matches.jsonl 6. Test_matches.jsonl

    Acknowledgements

    All of the data in this dataset is originally hosted on git and the same can also be found on the in-class competition's 'data' page here.

    Inspiration

    • to be updated.
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
JohnM (2023). Meta Kaggle Prize Money [Dataset]. https://www.kaggle.com/jpmiller/meta-kaggle-moneyboard/activity
Organization logo

Meta Kaggle Prize Money

Competition prizes and the Kagglers who won them, from Grandmaster to Novice

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 26, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
JohnM
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

NEW: leaderboard.csv with lifetime earnings for all Kagglers

Have you ever wondered how much prize money gets distributed through Kaggle competitions? Or how much top earners have won? Here's the data to help answer such questions. Money awarded for each competition is itemized by leaderboard rank and matched with the teams/users at that rank. It's assumed that teams evenly split their winnings among members.

The dataset captures nearly $16M total prize money awarded for top leaderboard finishes. Prize breakdowns were taken from Kaggle web pages. Pages and prize descriptions had many different page formats/wording, especially before 2017, so coverage prior to that time is incomplete.

Amounts here reflect the data contained in Meta-Kaggle and as such don't account for the following occurrences: - Milestone prizes - Efficiency awards - Non-cash prizes - Teams in the money zone that didn't qualify - Unequal distributions within teams

Last update: July 8, 2023.

Search
Clear search
Close search
Google apps
Main menu