100+ datasets found
  1. h

    twt-kaggle-data

    • huggingface.co
    Updated Dec 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    megha manoj (2023). twt-kaggle-data [Dataset]. https://huggingface.co/datasets/mochi-skz/twt-kaggle-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 8, 2023
    Authors
    megha manoj
    Description

    mochi-skz/twt-kaggle-data dataset hosted on Hugging Face and contributed by the HF Datasets community

  2. The LargeST Benchmark Dataset

    • kaggle.com
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    liuxu77 (2023). The LargeST Benchmark Dataset [Dataset]. https://www.kaggle.com/datasets/liuxu77/largest
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    liuxu77
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This is the official website for downloading the CA sub-dataset of the LargeST benchmark dataset. There are a total of 7 files in this page. Among them, 5 files in .h5 format contain the traffic flow raw data from 2017 to 2021, 1 file in .csv format provides the metadata for sensors, and 1 file in .npy format represents the adjacency matrix constructed based on road network distances. Please refer to https://github.com/liuxu77/LargeST for more information.

  3. My database

    • kaggle.com
    Updated Nov 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Doston (2018). My database [Dataset]. https://www.kaggle.com/datasets/doston/my-database/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 22, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Doston
    Description

    Dataset

    This dataset was created by Doston

    Contents

  4. f

    Orange dataset table

    • figshare.com
    xlsx
    Updated Mar 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rui SimÔes (2022). Orange dataset table [Dataset]. http://doi.org/10.6084/m9.figshare.19146410.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 4, 2022
    Dataset provided by
    figshare
    Authors
    Rui SimÔes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 ”M for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 ”M for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.

    Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.

  5. Soil Data Grevena

    • kaggle.com
    • data.mendeley.com
    Updated Sep 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jocelyn Dumlao (2023). Soil Data Grevena [Dataset]. https://www.kaggle.com/datasets/jocelyndumlao/soil-data-grevena
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Jocelyn Dumlao
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Grevena
    Description

    Description

    In this dataset, there are soil data analyses with properties such as pH, organic matter (OM), salinity (EC), etc., major elements (N, P, K, Mg) as well as some microelements (Fe, Zn, Mn, Cu, B) with significant impact on plant nutrition.

    Categories

    Agricultural Soil

    Acknowledgements & Source

    Panagiotis Tziachris

    Data Source

    View Details

    Image Source

  6. d

    Crash Reporting - Drivers Data

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +3more
    Updated Aug 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Crash Reporting - Drivers Data [Dataset]. https://catalog.data.gov/dataset/crash-reporting-drivers-data
    Explore at:
    Dataset updated
    Aug 2, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    This dataset provides information on motor vehicle operators (drivers) involved in traffic collisions occurring on county and local roadways. The dataset reports details of all traffic collisions occurring on county and local roadways within Montgomery County, as collected via the Automated Crash Reporting System (ACRS) of the Maryland State Police, and reported by the Montgomery County Police, Gaithersburg Police, Rockville Police, or the Maryland-National Capital Park Police. This dataset shows each collision data recorded and the drivers involved. Please note that these collision reports are based on preliminary information supplied to the Police Department by the reporting parties. Therefore, the collision data available on this web page may reflect: -Information not yet verified by further investigation -Information that may include verified and unverified collision data -Preliminary collision classifications may be changed at a later date based upon further investigation -Information may include mechanical or human error This dataset can be joined with the other 2 Crash Reporting datasets (see URLs below) by the State Report Number. * Crash Reporting - Incidents Data at https://data.montgomerycountymd.gov/Public-Safety/Crash-Reporting-Incidents-Data/bhju-22kf * Crash Reporting - Non-Motorists Data at https://data.montgomerycountymd.gov/Public-Safety/Crash-Reporting-Non-Motorists-Data/n7fk-dce5 Update Frequency : Weekly

  7. CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine...

    • data.csiro.au
    • researchdata.edu.au
    Updated Dec 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Blondeau-Patissier; Thomas Schroeder; Foivos Diakogiannis; Zhibin Li (2022). CSIRO Sentinel-1 SAR image dataset of oil- and non-oil features for machine learning ( Deep Learning ) [Dataset]. http://doi.org/10.25919/4v55-dn16
    Explore at:
    Dataset updated
    Dec 15, 2022
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    David Blondeau-Patissier; Thomas Schroeder; Foivos Diakogiannis; Zhibin Li
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2015 - Aug 31, 2022
    Area covered
    Dataset funded by
    ESA
    CSIROhttp://www.csiro.au/
    Description

    What this collection is: A curated, binary-classified image dataset of grayscale (1 band) 400 x 400-pixel size, or image chips, in a JPEG format extracted from processed Sentinel-1 Synthetic Aperture Radar (SAR) satellite scenes acquired over various regions of the world, and featuring clear open ocean chips, look-alikes (wind or biogenic features) and oil slick chips.

    This binary dataset contains chips labelled as: - "0" for chips not containing any oil features (look-alikes or clean seas)
    - "1" for those containing oil features.

    This binary dataset is imbalanced, and biased towards "0" labelled chips (i.e., no oil features), which correspond to 66% of the dataset. Chips containing oil features, labelled "1", correspond to 34% of the dataset.

    Why: This dataset can be used for training, validation and/or testing of machine learning, including deep learning, algorithms for the detection of oil features in SAR imagery. Directly applicable for algorithm development for the European Space Agency Sentinel-1 SAR mission (https://sentinel.esa.int/web/sentinel/missions/sentinel-1 ), it may be suitable for the development of detection algorithms for other SAR satellite sensors.

    Overview of this dataset: Total number of chips (both classes) is N=5,630 Class 0 1 Total 3,725 1,905

    Further information and description is found in the ReadMe file provided (ReadMe_Sentinel1_SAR_OilNoOil_20221215.txt)

  8. Data from: Paper Reviews Data Set

    • kaggle.com
    Updated Jan 22, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Felipe Navarro (2018). Paper Reviews Data Set [Dataset]. https://www.kaggle.com/fnbalves/paper-reviews-data-set/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 22, 2018
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Felipe Navarro
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Dataset

    This dataset was created by Felipe Navarro

    Released under Database: Open Database, Contents: Database Contents

    Contents

  9. h

    Synthetic dataset - Using data-driven ML towards improving diagnosis of ACS

    • healthdatagateway.org
    unknown
    Updated Oct 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158) (2023). Synthetic dataset - Using data-driven ML towards improving diagnosis of ACS [Dataset]. https://healthdatagateway.org/dataset/138
    Explore at:
    unknownAvailable download formats
    Dataset updated
    Oct 9, 2023
    Dataset authored and provided by
    This publication uses data from PIONEER, an ethically approved database and analytical environment (East Midlands Derby Research Ethics 20/EM/0158)
    License

    https://www.pioneerdatahub.co.uk/data/data-request-process/https://www.pioneerdatahub.co.uk/data/data-request-process/

    Description

    Background Acute compartment syndrome (ACS) is an emergency orthopaedic condition wherein a rapid rise in compartmental pressure compromises blood perfusion to the tissues leading to ischaemia and muscle necrosis. This serious condition is often misdiagnosed or associated with significant diagnostic delay, and can lead to limb amputations and death.

    The most common causes of ACS are high impact trauma, especially fractures of the lower limbs which account for 40% of ACS cases. ACS is a challenge to diagnose and treat effectively, with differing clinical thresholds being utilised which can result in unnecessary osteotomy. The highly granular synthetic data for over 900 patients with ACS provide the following key parameters to support critical research into this condition:

    1. Patient data (injury type, location, age, sex, pain levels, pre-injury status and comorbidities)
    2. Physiological parameters (intracompartmental pressure, pH, tissue oxygenation, compartment hardness)
    3. Muscle biomarkers (creatine kinase, myoglobin, lactate dehydrogenase)
    4. Blood vessel damage biomarkers (glycocalyx shedding markers, endothelial permeability markers)

    PIONEER geography: The West Midlands (WM) has a population of 5.9 million & includes a diverse ethnic & socio-economic mix. UHB is one of the largest NHS Trusts in England, providing direct acute services & specialist care across four hospital sites, with 2.2 million patient episodes per year, 2750 beds & an expanded 250 ITU bed capacity during COVID. UHB runs a fully electronic healthcare record (EHR) (PICS; Birmingham Systems), a shared primary & secondary care record (Your Care Connected) & a patient portal “My Health”.

    Scope: Enabling data-driven research and machine learning models towards improving the diagnosis of Acute compartment syndrome. Longitudinal & individually linked, so that the preceding & subsequent health journey can be mapped & healthcare utilisation prior to & after admission understood. The dataset includes highly granular patient demographics, physiological parameters, muscle biomarkers, blood biomarkers and co-morbidities taken from ICD-10 & SNOMED-CT codes. Serial, structured data pertaining to process of care (timings and admissions), presenting complaint, lab analysis results (eGFR, troponin, CRP, INR, ABG glucose), systolic and diastolic blood pressures, procedures and surgery details.

    Available supplementary data: ACS cohort, Matched controls; ambulance, OMOP data. Available supplementary support: Analytics, Model build, validation & refinement; A.I.; Data partner support for ETL (extract, transform & load) process, Clinical expertise, Patient & end-user access, Purchaser access, Regulatory requirements, Data-driven trials, “fast screen” services.

  10. u

    MIVIA ARG Dataset

    • mivia.unisa.it
    • zenodo.org
    text/vf-format
    Updated Jan 1, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MIVIA Lab (2013). MIVIA ARG Dataset [Dataset]. http://doi.org/10.1016/S0167-8655(02)00253-2
    Explore at:
    text/vf-formatAvailable download formats
    Dataset updated
    Jan 1, 2013
    Dataset authored and provided by
    MIVIA Lab
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The ARG Database is a huge collection of labeled and unlabeled graphs realized by the MIVIA Group. The aim of this collection is to provide the graph research community with a standard test ground for the benchmarking of graph matching algorithms.

  11. Z

    Data from: A Large-scale Dataset of (Open Source) License Text Variants

    • data.niaid.nih.gov
    Updated Mar 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stefano Zacchiroli (2022). A Large-scale Dataset of (Open Source) License Text Variants [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6379163
    Explore at:
    Dataset updated
    Mar 31, 2022
    Dataset authored and provided by
    Stefano Zacchiroli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We introduce a large-scale dataset of the complete texts of free/open source software (FOSS) license variants. To assemble it we have collected from the Software Heritage archive—the largest publicly available archive of FOSS source code with accompanying development history—all versions of files whose names are commonly used to convey licensing terms to software users and developers. The dataset consists of 6.5 million unique license files that can be used to conduct empirical studies on open source licensing, training of automated license classifiers, natural language processing (NLP) analyses of legal texts, as well as historical and phylogenetic studies on FOSS licensing. Additional metadata about shipped license files are also provided, making the dataset ready to use in various contexts; they include: file length measures, detected MIME type, detected SPDX license (using ScanCode), example origin (e.g., GitHub repository), oldest public commit in which the license appeared. The dataset is released as open data as an archive file containing all deduplicated license blobs, plus several portable CSV files for metadata, referencing blobs via cryptographic checksums.

    For more details see the included README file and companion paper:

    Stefano Zacchiroli. A Large-scale Dataset of (Open Source) License Text Variants. In proceedings of the 2022 Mining Software Repositories Conference (MSR 2022). 23-24 May 2022 Pittsburgh, Pennsylvania, United States. ACM 2022.

    If you use this dataset for research purposes, please acknowledge its use by citing the above paper.

  12. SAC Datasheets - Dataset - data.gov.ie

    • data.gov.ie
    Updated Dec 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2023). SAC Datasheets - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/sac-datasheets
    Explore at:
    Dataset updated
    Dec 6, 2023
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data should be read in conjunction with the spatial (GIS) boundaries for sites, site documents and related publications (see further https://www.npws.ie/maps-and-data/designated-site-data/ )

  13. d

    SAMPLE DATASET

    • staging-elsevier.digitalcommonsdata.com
    Updated Jul 10, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FirstName+36125284 LastName+36125284 (2019). SAMPLE DATASET [Dataset]. http://doi.org/10.1234/tgpfnk7zyt.19
    Explore at:
    Dataset updated
    Jul 10, 2019
    Authors
    FirstName+36125284 LastName+36125284
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the description of a dataset. The description can be quite long and this can look strange in the public dataset page. In the drafts page there is a scrollbar in the scrollbar, why not in the public page? Well, the public page needs to support viewing on a mobile phone and this can make scroll bars within scrollbars within scrollbars a little difficult. So maybe it’ll be better to try using ellipses. Additionally only adding a description does not make it a new version.

  14. s

    Fire Stations DLR - Dataset - data.smartdublin.ie

    • data.smartdublin.ie
    Updated Nov 11, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2014). Fire Stations DLR - Dataset - data.smartdublin.ie [Dataset]. https://data.smartdublin.ie/dataset/fire-stations-dlr
    Explore at:
    Dataset updated
    Nov 11, 2014
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Location of Fire Stations in the DĂșn Laoghaire-Rathdown Administrative area.

  15. Data from: ManyTypes4Py: A benchmark Python Dataset for Machine...

    • data.europa.eu
    • zenodo.org
    unknown
    Updated Mar 1, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zenodo (2021). ManyTypes4Py: A benchmark Python Dataset for Machine Learning-Based Type Inference [Dataset]. http://data.europa.eu/88u/dataset/oai-zenodo-org-4571228
    Explore at:
    unknown(395470535)Available download formats
    Dataset updated
    Mar 1, 2021
    Dataset authored and provided by
    Zenodohttp://zenodo.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset is gathered on Sep. 17th 2020. It has more than 5.4K Python repositories that are hosted on GitHub. Check out the file ManyTypes4PyDataset.spec for repositories URL and their commit SHA. The dataset is also de-duplicated using the CD4Py tool. The list of duplicate files is provided in duplicate_files.txt file. All of its Python projects are processed in JSON-formatted files. They contain a seq2seq representation of each file, type-related hints, and information for machine learning models. The structure of JSON-formatted files is described in JSONOutput.md file. The dataset is split into train, validation and test sets by source code files. The list of files and their corresponding set is provided in dataset_split.csv file. Notable changes to each version of the dataset are documented in CHANGELOG.md.

  16. R

    Data from: Orignal Dataset

    • universe.roboflow.com
    zip
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mm mm (2025). Orignal Dataset [Dataset]. https://universe.roboflow.com/mm-mm-jymkx/orignal-dataset
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    mm mm
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Objects Bounding Boxes
    Description

    Orignal Dataset

    ## Overview
    
    Orignal Dataset is a dataset for object detection tasks - it contains Objects annotations for 656 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  17. North American Dataset

    • ncei.noaa.gov
    • data.cnra.ca.gov
    • +1more
    Updated Oct 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Menne, Matthew J.; Williams, Claude N. Jr.; Korzeniewski, Bryant (2017). North American Dataset [Dataset]. http://doi.org/10.7289/v5348hn5
    Explore at:
    Dataset updated
    Oct 2017
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    Authors
    Menne, Matthew J.; Williams, Claude N. Jr.; Korzeniewski, Bryant
    Time period covered
    Jan 1, 1850 - Present
    Area covered
    Description

    The North American Dataset contains sets of Maximum, Minimum and Average Temperature data and Precipitation data that are either (1) raw (non-adjusted though flagged for possible quality issues), (2) adjusted due to time of observation bias (TOB) or (3) put through the Pairwise Homogenization Algorithm (PHA). These files contain North American stations and its data are measured in hundredths of degrees Celsius (without decimal place) for temperature and tenths of millimeters (without decimal place) for Precipitation. Each file includes the entire available Period of Record.

  18. I

    Cline Center Coup d’État Project Dataset

    • databank.illinois.edu
    Updated May 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Buddy Peyton; Joseph Bajjalieh; Dan Shalmon; Michael Martin; Emilio Soto (2025). Cline Center Coup d’État Project Dataset [Dataset]. http://doi.org/10.13012/B2IDB-9651987_V7
    Explore at:
    Dataset updated
    May 11, 2025
    Authors
    Buddy Peyton; Joseph Bajjalieh; Dan Shalmon; Michael Martin; Emilio Soto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Coups d'Ètat are important events in the life of a country. They constitute an important subset of irregular transfers of political power that can have significant and enduring consequences for national well-being. There are only a limited number of datasets available to study these events (Powell and Thyne 2011, Marshall and Marshall 2019). Seeking to facilitate research on post-WWII coups by compiling a more comprehensive list and categorization of these events, the Cline Center for Advanced Social Research (previously the Cline Center for Democracy) initiated the Coup d’État Project as part of its Societal Infrastructures and Development (SID) project. More specifically, this dataset identifies the outcomes of coup events (i.e., realized, unrealized, or conspiracy) the type of actor(s) who initiated the coup (i.e., military, rebels, etc.), as well as the fate of the deposed leader. Version 2.1.3 adds 19 additional coup events to the data set, corrects the date of a coup in Tunisia, and reclassifies an attempted coup in Brazil in December 2022 to a conspiracy. Version 2.1.2 added 6 additional coup events that occurred in 2022 and updated the coding of an attempted coup event in Kazakhstan in January 2022. Version 2.1.1 corrected a mistake in version 2.1.0, where the designation of “dissident coup” had been dropped in error for coup_id: 00201062021. Version 2.1.1 fixed this omission by marking the case as both a dissident coup and an auto-coup. Version 2.1.0 added 36 cases to the data set and removed two cases from the v2.0.0 data. This update also added actor coding for 46 coup events and added executive outcomes to 18 events from version 2.0.0. A few other changes were made to correct inconsistencies in the coup ID variable and the date of the event. Version 2.0.0 improved several aspects of the previous version (v1.0.0) and incorporated additional source material to include: ‱ Reconciling missing event data ‱ Removing events with irreconcilable event dates ‱ Removing events with insufficient sourcing (each event needs at least two sources) ‱ Removing events that were inaccurately coded as coup events ‱ Removing variables that fell below the threshold of inter-coder reliability required by the project ‱ Removing the spreadsheet ‘CoupInventory.xls’ because of inadequate attribution and citations in the event summaries ‱ Extending the period covered from 1945-2005 to 1945-2019 ‱ Adding events from Powell and Thyne’s Coup Data (Powell and Thyne, 2011)
    Items in this Dataset 1. Cline Center Coup d'État Codebook v.2.1.3 Codebook.pdf - This 15-page document describes the Cline Center Coup d’État Project dataset. The first section of this codebook provides a summary of the different versions of the data. The second section provides a succinct definition of a coup d’état used by the Coup d'État Project and an overview of the categories used to differentiate the wide array of events that meet the project's definition. It also defines coup outcomes. The third section describes the methodology used to produce the data. Revised February 2024 2. Coup Data v2.1.3.csv - This CSV (Comma Separated Values) file contains all of the coup event data from the Cline Center Coup d’État Project. It contains 29 variables and 1000 observations. Revised February 2024 3. Source Document v2.1.3.pdf - This 325-page document provides the sources used for each of the coup events identified in this dataset. Please use the value in the coup_id variable to identify the sources used to identify that particular event. Revised February 2024 4. README.md - This file contains useful information for the user about the dataset. It is a text file written in markdown language. Revised February 2024
    Citation Guidelines 1. To cite the codebook (or any other documentation associated with the Cline Center Coup d’État Project Dataset) please use the following citation: Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Scott Althaus. 2024. “Cline Center Coup d’État Project Dataset Codebook”. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7 2. To cite data from the Cline Center Coup d’État Project Dataset please use the following citation (filling in the correct date of access): Peyton, Buddy, Joseph Bajjalieh, Dan Shalmon, Michael Martin, Jonathan Bonaguro, and Emilio Soto. 2024. Cline Center Coup d’État Project Dataset. Cline Center for Advanced Social Research. V.2.1.3. February 27. University of Illinois Urbana-Champaign. doi: 10.13012/B2IDB-9651987_V7

  19. d

    Crash Data

    • catalog.data.gov
    • data.townofcary.org
    Updated Aug 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cary (2025). Crash Data [Dataset]. https://catalog.data.gov/dataset/crash-data
    Explore at:
    Dataset updated
    Aug 11, 2025
    Dataset provided by
    Cary
    Description

    This dataset contains crash information from the last five years to the current date. The data is based on the National Incident Based Reporting System (NIBRS). The data is dynamic, allowing for additions, deletions and modifications at any time, resulting in more accurate information in the database. Due to ongoing and continuous data entry, the numbers of records in subsequent extractions are subject to change.About Crash DataThe Cary Police Department strives to make crash data as accurate as possible, but there is no avoiding the introduction of errors into this process, which relies on data furnished by many people and that cannot always be verified. As the data is updated on this site there will be instances of adding new incidents and updating existing data with information gathered through the investigative process.Not surprisingly, crash data becomes more accurate over time, as new crashes are reported and more information comes to light during investigations.This dynamic nature of crash data means that content provided here today will probably differ from content provided a week from now. Likewise, content provided on this site will probably differ somewhat from crime statistics published elsewhere by the Town of Cary, even though they draw from the same database.About Crash LocationsCrash locations reflect the approximate locations of the crash. Certain crashes may not appear on maps if there is insufficient detail to establish a specific, mappable location.

  20. A

    ‘How Every NFL Team’s Fans Lean Politically?’ analyzed by Analyst-2

    • analyst-2.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com), ‘How Every NFL Team’s Fans Lean Politically?’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-how-every-nfl-teams-fans-lean-politically-550a/f911ccf2/?iid=003-030&v=presentation
    Explore at:
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘How Every NFL Team’s Fans Lean Politically?’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/nfl-fandome on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    Data behind the story How Every NFL Team’s Fans Lean Politically.

    Google Trends Data

    Google Trends data was derived from comparing 5-year search traffic for the 7 sports leagues we analyzed:

    https://g.co/trends/5P8aa

    Results are listed by designated market area (DMA).

    The percentages are the approximate percentage of major-sports searches that were conducted for each league.

    Trump's percentage is his share of the vote within the DMA in the 2016 presidential election.

    SurveyMonkey Data

    SurveyMonkey data was derived from a poll of American adults ages 18 and older, conducted between Sept. 1-7, 2017.

    Listed numbers are the raw totals for respondents who ranked a given NFL team among their three favorites, and how many identified with a given party (further broken down by race). We also list the percentages of the entire sample that identified with each party, and were of each race.

    The data is available under the Creative Commons Attribution 4.0 International License and the code is available under the MIT License. If you do find it useful, please let us know.

    Source: https://github.com/fivethirtyeight/data

    This dataset was created by FiveThirtyEight and contains around 0 samples along with Unnamed: 10, Unnamed: 4, technical information and other features such as: - Unnamed: 3 - Unnamed: 1 - and more.

    How to use this dataset

    • Analyze Unnamed: 13 in relation to Unnamed: 21
    • Study the influence of Unnamed: 7 on Unnamed: 12
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit FiveThirtyEight

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
megha manoj (2023). twt-kaggle-data [Dataset]. https://huggingface.co/datasets/mochi-skz/twt-kaggle-data

twt-kaggle-data

mochi-skz/twt-kaggle-data

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Dec 8, 2023
Authors
megha manoj
Description

mochi-skz/twt-kaggle-data dataset hosted on Hugging Face and contributed by the HF Datasets community

Search
Clear search
Close search
Google apps
Main menu