100+ datasets found
  1. Spotify dataset

    • kaggle.com
    zip
    Updated Dec 17, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vatsal Mavani (2021). Spotify dataset [Dataset]. https://www.kaggle.com/datasets/vatsalmavani/spotify-dataset
    Explore at:
    zip(17275602 bytes)Available download formats
    Dataset updated
    Dec 17, 2021
    Authors
    Vatsal Mavani
    Description

    Dataset

    This dataset was created by Vatsal Mavani

    Contents

  2. R

    Kaggles For Traffic Dataset

    • universe.roboflow.com
    zip
    Updated Dec 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    school (2023). Kaggles For Traffic Dataset [Dataset]. https://universe.roboflow.com/school-0ljld/kaggle-datasets-for-traffic
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 25, 2023
    Dataset authored and provided by
    school
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Traffic Sign Bounding Boxes
    Description

    Kaggle Datasets For Traffic

    ## Overview
    
    Kaggle Datasets For Traffic is a dataset for object detection tasks - it contains Traffic Sign annotations for 8,122 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  3. Meta Kaggle Code

    • kaggle.com
    zip
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaggle (2025). Meta Kaggle Code [Dataset]. https://www.kaggle.com/datasets/kaggle/meta-kaggle-code/code
    Explore at:
    zip(133186454988 bytes)Available download formats
    Dataset updated
    Mar 20, 2025
    Dataset authored and provided by
    Kagglehttp://kaggle.com/
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Explore our public notebook content!

    Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.

    Why we’re releasing this dataset

    By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.

    Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.

    The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!

    Sensitive data

    While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.

    Joining with Meta Kaggle

    The files contained here are a subset of the KernelVersions in Meta Kaggle. The file names match the ids in the KernelVersions csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.

    File organization

    The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.

    The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays

    Questions / Comments

    We love feedback! Let us know in the Discussion tab.

    Happy Kaggling!

  4. Z

    FSDKaggle2019

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eduardo Fonseca (2020). FSDKaggle2019 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3612636
    Explore at:
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Manoj Plakal
    Daniel P. W. Ellis
    Eduardo Fonseca
    Frederic Font
    Xavier Serra
    Description

    FSDKaggle2019 is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology. FSDKaggle2019 has been used for the DCASE Challenge 2019 Task 2, which was run as a Kaggle competition titled Freesound Audio Tagging 2019.

    Citation

    If you use the FSDKaggle2019 dataset or part of it, please cite our DCASE 2019 paper:

    Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Serra. "Audio tagging with noisy labels and minimal supervision". Proceedings of the DCASE 2019 Workshop, NYC, US (2019)

    You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2019.

    Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017

    Data curators

    Eduardo Fonseca, Manoj Plakal, Xavier Favory, Jordi Pons

    Contact

    You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.

    ABOUT FSDKaggle2019

    Freesound Dataset Kaggle 2019 (or FSDKaggle2019 for short) is an audio dataset containing 29,266 audio files annotated with 80 labels of the AudioSet Ontology [1]. FSDKaggle2019 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2019. Please visit the DCASE2019 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound Audio Tagging 2019. It was organized by researchers from the Music Technology Group (MTG) of Universitat Pompeu Fabra (UPF), and from Sound Understanding team at Google AI Perception. The competition intended to provide insight towards the development of broadly-applicable sound event classifiers able to cope with label noise and minimal supervision conditions.

    FSDKaggle2019 employs audio clips from the following sources:

    Freesound Dataset (FSD): a dataset being collected at the MTG-UPF based on Freesound content organized with the AudioSet Ontology

    The soundtracks of a pool of Flickr videos taken from the Yahoo Flickr Creative Commons 100M dataset (YFCC)

    The audio data is labeled using a vocabulary of 80 labels from Google’s AudioSet Ontology [1], covering diverse topics: Guitar and other Musical Instruments, Percussion, Water, Digestive, Respiratory sounds, Human voice, Human locomotion, Hands, Human group actions, Insect, Domestic animals, Glass, Liquid, Motor vehicle (road), Mechanisms, Doors, and a variety of Domestic sounds. The full list of categories can be inspected in vocabulary.csv (see Files & Download below). The goal of the task was to build a multi-label audio tagging system that can predict appropriate label(s) for each audio clip in a test set.

    What follows is a summary of some of the most relevant characteristics of FSDKaggle2019. Nevertheless, it is highly recommended to read our DCASE 2019 paper for a more in-depth description of the dataset and how it was built.

    Ground Truth Labels

    The ground truth labels are provided at the clip-level, and express the presence of a sound category in the audio clip, hence can be considered weak labels or tags. Audio clips have variable lengths (roughly from 0.3 to 30s).

    The audio content from FSD has been manually labeled by humans following a data labeling process using the Freesound Annotator platform. Most labels have inter-annotator agreement but not all of them. More details about the data labeling process and the Freesound Annotator can be found in [2].

    The YFCC soundtracks were labeled using automated heuristics applied to the audio content and metadata of the original Flickr clips. Hence, a substantial amount of label noise can be expected. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises. More information about some of the types of label noise that can be encountered is available in [3].

    Specifically, FSDKaggle2019 features three types of label quality, one for each set in the dataset:

    curated train set: correct (but potentially incomplete) labels

    noisy train set: noisy labels

    test set: correct and complete labels

    Further details can be found below in the sections for each set.

    Format

    All audio clips are provided as uncompressed PCM 16 bit, 44.1 kHz, mono audio files.

    DATA SPLIT

    FSDKaggle2019 consists of two train sets and one test set. The idea is to limit the supervision provided for training (i.e., the manually-labeled, hence reliable, data), thus promoting approaches to deal with label noise.

    Curated train set

    The curated train set consists of manually-labeled data from FSD.

    Number of clips/class: 75 except in a few cases (where there are less)

    Total number of clips: 4970

    Avg number of labels/clip: 1.2

    Total duration: 10.5 hours

    The duration of the audio clips ranges from 0.3 to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording/uploading sounds. Labels are correct but potentially incomplete. It can happen that a few of these audio clips present additional acoustic material beyond the provided ground truth label(s).

    Noisy train set

    The noisy train set is a larger set of noisy web audio data from Flickr videos taken from the YFCC dataset [5].

    Number of clips/class: 300

    Total number of clips: 19,815

    Avg number of labels/clip: 1.2

    Total duration: ~80 hours

    The duration of the audio clips ranges from 1s to 15s, with the vast majority lasting 15s. Labels are automatically generated and purposefully noisy. No human validation is involved. The label noise can vary widely in amount and type depending on the category, including in- and out-of-vocabulary noises.

    Considering the numbers above, the per-class data distribution available for training is, for most of the classes, 300 clips from the noisy train set and 75 clips from the curated train set. This means 80% noisy / 20% curated at the clip level, while at the duration level the proportion is more extreme considering the variable-length clips.

    Test set

    The test set is used for system evaluation and consists of manually-labeled data from FSD.

    Number of clips/class: between 50 and 150

    Total number of clips: 4481

    Avg number of labels/clip: 1.4

    Total duration: 12.9 hours

    The acoustic material present in the test set clips is labeled exhaustively using the aforementioned vocabulary of 80 classes. Most labels have inter-annotator agreement but not all of them. Except human error, the label(s) are correct and complete considering the target vocabulary; nonetheless, a few clips could still present additional (unlabeled) acoustic content out of the vocabulary.

    During the DCASE2019 Challenge Task 2, the test set was split into two subsets, for the public and private leaderboards, and only the data corresponding to the public leaderboard was provided. In this current package you will find the full test set with all the test labels. To allow comparison with previous work, the file test_post_competition.csv includes a flag to determine the corresponding leaderboard (public or private) for each test clip (see more info in Files & Download below).

    Acoustic mismatch

    As mentioned before, FSDKaggle2019 uses audio clips from two sources:

    FSD: curated train set and test set, and

    YFCC: noisy train set.

    While the sources of audio (Freesound and Flickr) are collaboratively contributed and pretty diverse themselves, a certain acoustic mismatch can be expected between FSD and YFCC. We conjecture this mismatch comes from a variety of reasons. For example, through acoustic inspection of a small sample of both data sources, we find a higher percentage of high quality recordings in FSD. In addition, audio clips in Freesound are typically recorded with the purpose of capturing audio, which is not necessarily the case in YFCC.

    This mismatch can have an impact in the evaluation, considering that most of the train data come from YFCC, while all test data are drawn from FSD. This constraint (i.e., noisy training data coming from a different web audio source than the test set) is sometimes a real-world condition.

    LICENSE

    All clips in FSDKaggle2019 are released under Creative Commons (CC) licenses. For attribution purposes and to facilitate attribution of these files to third parties, we include a mapping from the audio clips to their corresponding licenses.

    Curated train set and test set. All clips in Freesound are released under different modalities of Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound, some of them requiring attribution to their original authors and some forbidding further commercial reuse. The licenses are specified in the files train_curated_post_competition.csv and test_post_competition.csv. These licenses can be CC0, CC-BY, CC-BY-NC and CC Sampling+.

    Noisy train set. Similarly, the licenses of the soundtracks from Flickr used in FSDKaggle2019 are specified in the file train_noisy_post_competition.csv. These licenses can be CC-BY and CC BY-SA.

    In addition, FSDKaggle2019 as a whole is the result of a curation process and it has an additional license. FSDKaggle2019 is released under CC-BY. This license is specified in the LICENSE-DATASET file downloaded with the FSDKaggle2019.doc zip file.

    FILES & DOWNLOAD

    FSDKaggle2019 can be downloaded as a series of zip files with the following directory structure:

    root │
    └───FSDKaggle2019.audio_train_curated/ Audio clips in the curated train set │ └───FSDKaggle2019.audio_train_noisy/ Audio clips in the noisy

  5. Data from: Global Superstore

    • kaggle.com
    zip
    Updated Jul 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chandra Shekhar (2020). Global Superstore [Dataset]. https://www.kaggle.com/datasets/shekpaul/global-superstore
    Explore at:
    zip(5985038 bytes)Available download formats
    Dataset updated
    Jul 16, 2020
    Authors
    Chandra Shekhar
    Description

    Dataset

    This dataset was created by Chandra Shekhar

    Released under Other (specified in description)

    Contents

  6. FSDKaggle2018

    • zenodo.org
    • opendatalab.com
    • +1more
    zip
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eduardo Fonseca; Eduardo Fonseca; Xavier Favory; Jordi Pons; Frederic Font; Frederic Font; Manoj Plakal; Daniel P. W. Ellis; Daniel P. W. Ellis; Xavier Serra; Xavier Serra; Xavier Favory; Jordi Pons; Manoj Plakal (2020). FSDKaggle2018 [Dataset]. http://doi.org/10.5281/zenodo.2552860
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Eduardo Fonseca; Eduardo Fonseca; Xavier Favory; Jordi Pons; Frederic Font; Frederic Font; Manoj Plakal; Daniel P. W. Ellis; Daniel P. W. Ellis; Xavier Serra; Xavier Serra; Xavier Favory; Jordi Pons; Manoj Plakal
    Description

    FSDKaggle2018 is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology. FSDKaggle2018 has been used for the DCASE Challenge 2018 Task 2, which was run as a Kaggle competition titled Freesound General-Purpose Audio Tagging Challenge.

    Citation

    If you use the FSDKaggle2018 dataset or part of it, please cite our DCASE 2018 paper:

    Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Favory, Jordi Pons, Xavier Serra. "General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description, Dataset, and Baseline". Proceedings of the DCASE 2018 Workshop (2018)

    You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2018.

    Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017

    Contact

    You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.

    About this dataset

    Freesound Dataset Kaggle 2018 (or FSDKaggle2018 for short) is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology [1]. FSDKaggle2018 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2018. Please visit the DCASE2018 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound General-Purpose Audio Tagging Challenge. It was organized by researchers from the Music Technology Group of Universitat Pompeu Fabra, and from Google Research’s Machine Perception Team.

    The goal of this competition was to build an audio tagging system that can categorize an audio clip as belonging to one of a set of 41 diverse categories drawn from the AudioSet Ontology.

    All audio samples in this dataset are gathered from Freesound [2] and are provided here as uncompressed PCM 16 bit, 44.1 kHz, mono audio files. Note that because Freesound content is collaboratively contributed, recording quality and techniques can vary widely.

    The ground truth data provided in this dataset has been obtained after a data labeling process which is described below in the Data labeling process section. FSDKaggle2018 clips are unequally distributed in the following 41 categories of the AudioSet Ontology:

    "Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation", "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard", "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano", "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel", "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling", "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe", "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak", "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle", "Writing".

    Some other relevant characteristics of FSDKaggle2018:

    • The dataset is split into a train set and a test set.

    • The train set is meant to be for system development and includes ~9.5k samples unequally distributed among 41 categories. The minimum number of audio samples per category in the train set is 94, and the maximum 300. The duration of the audio samples ranges from 300ms to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording sounds. The total duration of the train set is roughly 18h.

    • Out of the ~9.5k samples from the train set, ~3.7k have manually-verified ground truth annotations and ~5.8k have non-verified annotations. The non-verified annotations of the train set have a quality estimate of at least 65-70% in each category. Checkout the Data labeling process section below for more information about this aspect.

    • Non-verified annotations in the train set are properly flagged in train.csv so that participants can opt to use this information during the development of their systems.

    • The test set is composed of 1.6k samples with manually-verified annotations and with a similar category distribution than that of the train set. The total duration of the test set is roughly 2h.

    • All audio samples in this dataset have a single label (i.e. are only annotated with one label). Checkout the Data labeling process section below for more information about this aspect. A single label should be predicted for each file in the test set.

    Data labeling process

    The data labeling process started from a manual mapping between Freesound tags and AudioSet Ontology categories (or labels), which was carried out by researchers at the Music Technology Group, Universitat Pompeu Fabra, Barcelona. Using this mapping, a number of Freesound audio samples were automatically annotated with labels from the AudioSet Ontology. These annotations can be understood as weak labels since they express the presence of a sound category in an audio sample.

    Then, a data validation process was carried out in which a number of participants did listen to the annotated sounds and manually assessed the presence/absence of an automatically assigned sound category, according to the AudioSet category description.

    Audio samples in FSDKaggle2018 are only annotated with a single ground truth label (see train.csv). A total of 3,710 annotations included in the train set of FSDKaggle2018 are annotations that have been manually validated as present and predominant (some with inter-annotator agreement but not all of them). This means that in most cases there is no additional acoustic material other than the labeled category. In few cases there may be some additional sound events, but these additional events won't belong to any of the 41 categories of FSDKaggle2018.

    The rest of the annotations have not been manually validated and therefore some of them could be inaccurate. Nonetheless, we have estimated that at least 65-70% of the non-verified annotations per category in the train set are indeed correct. It can happen that some of these non-verified audio samples present several sound sources even though only one label is provided as ground truth. These additional sources are typically out of the set of the 41 categories, but in a few cases they could be within.

    More details about the data labeling process can be found in [3].

    License

    FSDKaggle2018 has licenses at two different levels, as explained next.

    All sounds in Freesound are released under Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound. For attribution purposes and to facilitate attribution of these files to third parties, we include a relation of the audio clips included in FSDKaggle2018 and their corresponding license. The licenses are specified in the files train_post_competition.csv and test_post_competition_scoring_clips.csv.

    In addition, FSDKaggle2018 as a whole is the result of a curation process and it has an additional license. FSDKaggle2018 is released under CC-BY. This license is specified in the LICENSE-DATASET file downloaded with the FSDKaggle2018.doc zip file.

    Files

    FSDKaggle2018 can be downloaded as a series of zip files with the following directory structure:

    root
    │
    └───FSDKaggle2018.audio_train/ Audio clips in the train set │
    └───FSDKaggle2018.audio_test/ Audio clips in the test set │
    └───FSDKaggle2018.meta/ Files for evaluation setup │ │
    │ └───train_post_competition.csv Data split and ground truth for the train set │ │
    │ └───test_post_competition_scoring_clips.csv Ground truth for the test set

    └───FSDKaggle2018.doc/ │
    └───README.md The dataset description file you are reading │
    └───LICENSE-DATASET

  7. Loan Prediction Problem Dataset

    • kaggle.com
    Updated Mar 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Debdatta Chatterjee (2019). Loan Prediction Problem Dataset [Dataset]. https://www.kaggle.com/datasets/altruistdelhite04/loan-prediction-problem-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Debdatta Chatterjee
    Description

    Dataset

    This dataset was created by Debdatta Chatterjee

    Contents

  8. Datasets

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bastian Eichenberger; YinXiu Zhan (2023). Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.12958037.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Bastian Eichenberger; YinXiu Zhan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The benchmarking datasets used for deepBlink. The npz files contain train/valid/test splits inside and can be used directly. The files belong to the following challenges / classes:- ISBI Particle tracking challenge: microtubule, vesicle, receptor- Custom synthetic (based on http://smal.ws): particle- Custom fixed cell: smfish- Custom live cell: suntagThe csv files are to determine which image in the test splits correspond to which original image, SNR, and density.

  9. R

    Kaggle Gun Dataset

    • universe.roboflow.com
    zip
    Updated Sep 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gun Detection (2024). Kaggle Gun Dataset [Dataset]. https://universe.roboflow.com/gun-detection-uvnod/kaggle-gun
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 6, 2024
    Dataset authored and provided by
    Gun Detection
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Gun Bounding Boxes
    Description

    Kaggle Gun

    ## Overview
    
    Kaggle Gun is a dataset for object detection tasks - it contains Gun annotations for 435 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  10. P

    MNAD Dataset

    • paperswithcode.com
    Updated May 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). MNAD Dataset [Dataset]. https://paperswithcode.com/dataset/mnad
    Explore at:
    Dataset updated
    May 16, 2023
    Description

    About the MNAD Dataset The MNAD corpus is a collection of over 1 million Moroccan news articles written in modern Arabic language. These news articles have been gathered from 11 prominent electronic news sources. The dataset is made available to the academic community for research purposes, such as data mining (clustering, classification, etc.), information retrieval (ranking, search, etc.), and other non-commercial activities.

    Dataset Fields

    Title: The title of the article Body: The body of the article Category: The category of the article Source: The Electronic News paper source of the article

    About Version 1 of the Dataset (MNAD.v1) Version 1 of the dataset comprises 418,563 articles classified into 19 categories. The data was collected from well-known electronic news sources, namely Akhbarona.ma, Hespress.ma, Hibapress.com, and Le360.com. The articles were stored in four separate CSV files, each corresponding to the news website source. Each CSV file contains three fields: Title, Body, and Category of the news article.

    The dataset is rich in Arabic vocabulary, with approximately 906,125 unique words. It has been utilized as a benchmark in the research paper: "A Moroccan News Articles Dataset (MNAD) For Arabic Text Categorization". In 2021 International Conference on Decision Aid Sciences and Application (DASA).

    This dataset is available for download from the following sources: - Kaggle Datasets : MNADv1 - Huggingface Datasets: MNADv1

    About Version 2 of the Dataset (MNAD.v2) Version 2 of the MNAD dataset includes an additional 653,901 articles, bringing the total number of articles to over 1 million (1,069,489), classified into the same 19 categories as in version 1. The new documents were collected from seven additional prominent Moroccan news websites, namely al3omk.com, medi1news.com, alayam24.com, anfaspress.com, alyaoum24.com, barlamane.com, and SnrtNews.com.

    The newly collected articles have been merged with the articles from the previous version into a single CSV file named MNADv2.csv. This file includes an additional column called "Source" to indicate the source of each news article.

    Furthermore, MNAD.v2 incorporates improved pre-processing techniques and data cleaning methods. These enhancements involve removing duplicates, eliminating multiple spaces, discarding rows with NaN values, replacing new lines with " ", excluding very long and very short articles, and removing non-Arabic articles. These additions and improvements aim to enhance the usability and value of the MNAD dataset for researchers and practitioners in the field of Arabic text analysis.

    This dataset is available for download from the following sources: - Kaggle Datasets : MNADv2 - Huggingface Datasets: MNADv2

    Citation If you use our data, please cite the following paper:

    bibtex @inproceedings{MNAD2021, author = {Mourad Jbene and Smail Tigani and Rachid Saadane and Abdellah Chehri}, title = {A Moroccan News Articles Dataset ({MNAD}) For Arabic Text Categorization}, year = {2021}, publisher = {{IEEE}}, booktitle = {2021 International Conference on Decision Aid Sciences and Application ({DASA})} doi = {10.1109/dasa53625.2021.9682402}, url = {https://doi.org/10.1109/dasa53625.2021.9682402}, }

  11. NYC Open Data

    • kaggle.com
    zip
    Updated Mar 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NYC Open Data (2019). NYC Open Data [Dataset]. https://www.kaggle.com/datasets/nycopendata/new-york
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Mar 20, 2019
    Dataset authored and provided by
    NYC Open Data
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    NYC Open Data is an opportunity to engage New Yorkers in the information that is produced and used by City government. We believe that every New Yorker can benefit from Open Data, and Open Data can benefit from every New Yorker. Source: https://opendata.cityofnewyork.us/overview/

    Content

    Thanks to NYC Open Data, which makes public data generated by city agencies available for public use, and Citi Bike, we've incorporated over 150 GB of data in 5 open datasets into Google BigQuery Public Datasets, including:

    • Over 8 million 311 service requests from 2012-2016

    • More than 1 million motor vehicle collisions 2012-present

    • Citi Bike stations and 30 million Citi Bike trips 2013-present

    • Over 1 billion Yellow and Green Taxi rides from 2009-present

    • Over 500,000 sidewalk trees surveyed decennially in 1995, 2005, and 2015

    This dataset is deprecated and not being updated.

    Fork this kernel to get started with this dataset.

    Acknowledgements

    https://opendata.cityofnewyork.us/

    https://cloud.google.com/blog/big-data/2017/01/new-york-city-public-datasets-now-available-on-google-bigquery

    This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - https://data.cityofnewyork.us/ - and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    By accessing datasets and feeds available through NYC Open Data, the user agrees to all of the Terms of Use of NYC.gov as well as the Privacy Policy for NYC.gov. The user also agrees to any additional terms of use defined by the agencies, bureaus, and offices providing data. Public data sets made available on NYC Open Data are provided for informational purposes. The City does not warranty the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set made available on NYC Open Data, nor are any such warranties to be implied or inferred with respect to the public data sets furnished therein.

    The City is not liable for any deficiencies in the completeness, accuracy, content, or fitness for any particular purpose or use of any public data set, or application utilizing such data set, provided by any third party.

    Banner Photo by @bicadmedia from Unplash.

    Inspiration

    On which New York City streets are you most likely to find a loud party?

    Can you find the Virginia Pines in New York City?

    Where was the only collision caused by an animal that injured a cyclist?

    What’s the Citi Bike record for the Longest Distance in the Shortest Time (on a route with at least 100 rides)?

    https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png" alt="enter image description here"> https://cloud.google.com/blog/big-data/2017/01/images/148467900588042/nyc-dataset-6.png

  12. R

    Kaggle Fpt Mask Detection Dataset

    • universe.roboflow.com
    zip
    Updated Oct 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FPT DataComp (2021). Kaggle Fpt Mask Detection Dataset [Dataset]. https://universe.roboflow.com/fpt-datacomp/kaggle-fpt-mask-detection
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2021
    Dataset authored and provided by
    FPT DataComp
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Mask NoMask IncorrectMask Bounding Boxes
    Description

    Kaggle FPT Mask Detection

    ## Overview
    
    Kaggle FPT Mask Detection is a dataset for object detection tasks - it contains Mask NoMask IncorrectMask annotations for 1,824 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  13. R

    Damaged Roads Alvaro Basily Kaggle Dataset

    • universe.roboflow.com
    zip
    Updated Dec 10, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Final Project (2022). Damaged Roads Alvaro Basily Kaggle Dataset [Dataset]. https://universe.roboflow.com/final-project-vs0cw/damaged-roads-alvaro-basily-kaggle
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 10, 2022
    Dataset authored and provided by
    Final Project
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Variables measured
    Damaged Roads Bounding Boxes
    Description

    Damaged Roads Alvaro Basily Kaggle

    ## Overview
    
    Damaged Roads Alvaro Basily Kaggle is a dataset for object detection tasks - it contains Damaged Roads annotations for 3,321 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [Public Domain license](https://creativecommons.org/licenses/Public Domain).
    
  14. CT-FAN-21 corpus: A dataset for Fake News Detection

    • zenodo.org
    Updated Oct 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl; Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl (2022). CT-FAN-21 corpus: A dataset for Fake News Detection [Dataset]. http://doi.org/10.5281/zenodo.4714517
    Explore at:
    Dataset updated
    Oct 23, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl; Gautam Kishore Shahi; Julia Maria Struß; Thomas Mandl
    Description

    Data Access: The data in the research collection provided may only be used for research purposes. Portions of the data are copyrighted and have commercial value as data, so you must be careful to use it only for research purposes. Due to these restrictions, the collection is not open data. Please download the Agreement at Data Sharing Agreement and send the signed form to fakenewstask@gmail.com .

    Citation

    Please cite our work as

    @article{shahi2021overview,
     title={Overview of the CLEF-2021 CheckThat! lab task 3 on fake news detection},
     author={Shahi, Gautam Kishore and Stru{\ss}, Julia Maria and Mandl, Thomas},
     journal={Working Notes of CLEF},
     year={2021}
    }

    Problem Definition: Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other (e.g., claims in dispute) and detect the topical domain of the article. This task will run in English.

    Subtask 3A: Multi-class fake news detection of news articles (English) Sub-task A would detect fake news designed as a four-class classification problem. The training data will be released in batches and roughly about 900 articles with the respective label. Given the text of a news article, determine whether the main claim made in the article is true, partially true, false, or other. Our definitions for the categories are as follows:

    • False - The main claim made in an article is untrue.

    • Partially False - The main claim of an article is a mixture of true and false information. The article contains partially true and partially false information but cannot be considered 100% true. It includes all articles in categories like partially false, partially true, mostly true, miscaptioned, misleading etc., as defined by different fact-checking services.

    • True - This rating indicates that the primary elements of the main claim are demonstrably true.

    • Other- An article that cannot be categorised as true, false, or partially false due to lack of evidence about its claims. This category includes articles in dispute and unproven articles.

    Subtask 3B: Topical Domain Classification of News Articles (English) Fact-checkers require background expertise to identify the truthfulness of an article. The categorisation will help to automate the sampling process from a stream of data. Given the text of a news article, determine the topical domain of the article (English). This is a classification problem. The task is to categorise fake news articles into six topical categories like health, election, crime, climate, election, education. This task will be offered for a subset of the data of Subtask 3A.

    Input Data

    The data will be provided in the format of Id, title, text, rating, the domain; the description of the columns is as follows:

    Task 3a

    • ID- Unique identifier of the news article
    • Title- Title of the news article
    • text- Text mentioned inside the news article
    • our rating - class of the news article as false, partially false, true, other

    Task 3b

    • public_id- Unique identifier of the news article
    • Title- Title of the news article
    • text- Text mentioned inside the news article
    • domain - domain of the given news article(applicable only for task B)

    Output data format

    Task 3a

    • public_id- Unique identifier of the news article
    • predicted_rating- predicted class

    Sample File

    public_id, predicted_rating
    1, false
    2, true

    Task 3b

    • public_id- Unique identifier of the news article
    • predicted_domain- predicted domain

    Sample file

    public_id, predicted_domain
    1, health
    2, crime

    Additional data for Training

    To train your model, the participant can use additional data with a similar format; some datasets are available over the web. We don't provide the background truth for those datasets. For testing, we will not use any articles from other datasets. Some of the possible source:

    IMPORTANT!

    1. Fake news article used for task 3b is a subset of task 3a.
    2. We have used the data from 2010 to 2021, and the content of fake news is mixed up with several topics like election, COVID-19 etc.

    Evaluation Metrics

    This task is evaluated as a classification task. We will use the F1-macro measure for the ranking of teams. There is a limit of 5 runs (total and not per day), and only one person from a team is allowed to submit runs.

    Submission Link: https://competitions.codalab.org/competitions/31238

    Related Work

    • Shahi GK. AMUSED: An Annotation Framework of Multi-modal Social Media Data. arXiv preprint arXiv:2010.00502. 2020 Oct 1.https://arxiv.org/pdf/2010.00502.pdf
    • G. K. Shahi and D. Nandini, “FakeCovid – a multilingualcross-domain fact check news dataset for covid-19,” inWorkshop Proceedings of the 14th International AAAIConference on Web and Social Media, 2020. http://workshop-proceedings.icwsm.org/abstract?id=2020_14
    • Shahi, G. K., Dirkson, A., & Majchrzak, T. A. (2021). An exploratory study of covid-19 misinformation on twitter. Online Social Networks and Media, 22, 100104. doi: 10.1016/j.osnem.2020.100104
  15. Google Landmarks Dataset v2

    • github.com
    • paperswithcode.com
    • +2more
    Updated Sep 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Google (2019). Google Landmarks Dataset v2 [Dataset]. https://github.com/cvdfoundation/google-landmark
    Explore at:
    Dataset updated
    Sep 27, 2019
    Dataset provided by
    Googlehttp://google.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the second version of the Google Landmarks dataset (GLDv2), which contains images annotated with labels representing human-made and natural landmarks. The dataset can be used for landmark recognition and retrieval experiments. This version of the dataset contains approximately 5 million images, split into 3 sets of images: train, index and test. The dataset was presented in our CVPR'20 paper. In this repository, we present download links for all dataset files and relevant code for metric computation. This dataset was associated to two Kaggle challenges, on landmark recognition and landmark retrieval. Results were discussed as part of a CVPR'19 workshop. In this repository, we also provide scores for the top 10 teams in the challenges, based on the latest ground-truth version. Please visit the challenge and workshop webpages for more details on the data, tasks and technical solutions from top teams.

  16. R

    Kaggle Building Dataset

    • universe.roboflow.com
    zip
    Updated Aug 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PP (2024). Kaggle Building Dataset [Dataset]. https://universe.roboflow.com/pp-lax9a/kaggle-building/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Aug 11, 2024
    Dataset authored and provided by
    PP
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Building Bounding Boxes
    Description

    Kaggle Building

    ## Overview
    
    Kaggle Building is a dataset for object detection tasks - it contains Building annotations for 4,717 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  17. Datasets for figures and tables

    • catalog.data.gov
    • datasets.ai
    Updated Nov 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Datasets for figures and tables [Dataset]. https://catalog.data.gov/dataset/datasets-for-figures-and-tables
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Software Model simulations were conducted using WRF version 3.8.1 (available at https://github.com/NCAR/WRFV3) and CMAQ version 5.2.1 (available at https://github.com/USEPA/CMAQ). The meteorological and concentration fields created using these models are too large to archive on ScienceHub, approximately 1 TB, and are archived on EPA’s high performance computing archival system (ASM) at /asm/MOD3APP/pcc/02.NOAH.v.CLM.v.PX/. Figures Figures 1 – 6 and Figure 8: Created using the NCAR Command Language (NCL) scripts (https://www.ncl.ucar.edu/get_started.shtml). NCLD code can be downloaded from the NCAR website (https://www.ncl.ucar.edu/Download/) at no cost. The data used for these figures are archived on EPA’s ASM system and are available upon request. Figures 7, 8b-c, 8e-f, 8h-i, and 9 were created using the AMET utility developed by U.S. EPA/ORD. AMET can be freely downloaded and used at https://github.com/USEPA/AMET. The modeled data paired in space and time provided in this archive can be used to recreate these figures. The data contained in the compressed zip files are organized in comma delimited files with descriptive headers or space delimited files that match tabular data in the manuscript. The data dictionary provides additional information about the files and their contents. This dataset is associated with the following publication: Campbell, P., J. Bash, and T. Spero. Updates to the Noah Land Surface Model in WRF‐CMAQ to Improve Simulated Meteorology, Air Quality, and Deposition. Journal of Advances in Modeling Earth Systems. John Wiley & Sons, Inc., Hoboken, NJ, USA, 11(1): 231-256, (2019).

  18. Cervical Cancer Kaggle Dataset

    • universe.roboflow.com
    zip
    Updated Jul 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEERI (2023). Cervical Cancer Kaggle Dataset [Dataset]. https://universe.roboflow.com/ceeri-kntzw/cervical-cancer-kaggle
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 17, 2023
    Dataset provided by
    Central Electronics Engineering Research Institutehttps://www.ceeri.res.in/
    Authors
    CEERI
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Cervix Bounding Boxes
    Description

    Cervical Cancer Kaggle

    ## Overview
    
    Cervical Cancer Kaggle is a dataset for object detection tasks - it contains Cervix annotations for 400 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  19. tiny-imagenet-200

    • kaggle.com
    zip
    Updated Oct 25, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikhil Shingadiya (2021). tiny-imagenet-200 [Dataset]. https://www.kaggle.com/datasets/nikhilshingadiya/tinyimagenet200
    Explore at:
    zip(246604677 bytes)Available download formats
    Dataset updated
    Oct 25, 2021
    Authors
    Nikhil Shingadiya
    Description

    Dataset

    This dataset was created by Nikhil Shingadiya

    Contents

  20. A

    ‘Phishing Dataset for Machine Learning’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘Phishing Dataset for Machine Learning’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-phishing-dataset-for-machine-learning-2690/f1656d17/?iid=000-751&v=presentation
    Explore at:
    Dataset updated
    Nov 5, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Phishing Dataset for Machine Learning’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/shashwatwork/phishing-dataset-for-machine-learning on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Anti-phishing refers to efforts to block phishing attacks. Phishing is a kind of cybercrime where attackers pose as known or trusted entities and contact individuals through email, text or telephone and ask them to share sensitive information. Typically, in a phishing email attack, and the message will suggest that there is a problem with an invoice, that there has been suspicious activity on an account, or that the user must login to verify an account or password. Users may also be prompted to enter credit card information or bank account details as well as other sensitive data. Once this information is collected, attackers may use it to access accounts, steal data and identities, and download malware onto the user’s computer.

    Content

    This dataset contains 48 features extracted from 5000 phishing webpages and 5000 legitimate webpages, which were downloaded from January to May 2015 and from May to June 2017. An improved feature extraction technique is employed by leveraging the browser automation framework (i.e., Selenium WebDriver), which is more precise and robust compared to the parsing approach based on regular expressions.

    Anti-phishing researchers and experts may find this dataset useful for phishing features analysis, conducting rapid proof of concept experiments or benchmarking phishing classification models.

    Acknowledgements

    Tan, Choon Lin (2018), “Phishing Dataset for Machine Learning: Feature Evaluation”, Mendeley Data, V1, doi: 10.17632/h3cgnj8hft.1 Source of the Dataset.

    --- Original source retains full ownership of the source dataset ---

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Vatsal Mavani (2021). Spotify dataset [Dataset]. https://www.kaggle.com/datasets/vatsalmavani/spotify-dataset
Organization logo

Spotify dataset

Explore at:
zip(17275602 bytes)Available download formats
Dataset updated
Dec 17, 2021
Authors
Vatsal Mavani
Description

Dataset

This dataset was created by Vatsal Mavani

Contents

Search
Clear search
Close search
Google apps
Main menu