This dataset was created by Chandra Shekhar
Released under Other (specified in description)
The District of Columbia offers several interactive online visualizations highlighting data and information from various fields of interest such as crime statistics, public school profiles, detailed property information and more. The web visualizations in this group present data coming from agencies across the Government of the District of Columbia. Click each to read a brief introduction and to access the site. This app is embedded in https://opendata.dc.gov/pages/dashboards.
This dataset was created by Ankush Tiwari
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We provide a dataset that includes visualizations of eye-tracking scanpaths with a particular focus Autism Spectrum Disorder (ASD). The key idea is to transform the dynamics of eye motion into visual patterns, and hence diagnosis-related tasks could be approached using image analysis techniques. The image dataset is publicly available to be used by other studies aiming to experiment the usability of eye-tracking within the ASD context. It is believed that the dataset can allow for the development of further interesting applications using Machine Learning or image processing techniques. For more info, please refer to the publication below and the project website.Original Publication:Carette, R., Elbattah, M., Dequen, G., Guérin, J, & Cilia, F. (2019, February). Learning to predict autism spectrum disorder based on the visual patterns of eye-tracking scanpaths. In Proceedings of the 12th International Conference on Health Informatics (HEALTHINF 2019).Project Website:https://www.researchgate.net/project/Predicting-Autism-Spectrum-Disorder-Using-Machine-Learning-and-Eye-Trackinghttps://mahmoud-elbattah.github.io/ML4Autism/
All 311 Service Requests from 2010 to present. This information is automatically updated daily.
Click here to download data from 2011 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2011/fpz8-jqf4
Click here to download data from 2012 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2012/as38-8eb5
Click here to download data from 2013 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2013/hybb-af8n
Click here to download data from 2014 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2014/vtzg-7562
Click here to download data from 2015 - https://data.cityofnewyork.us/dataset/311-Service-Requests-From-2015/57g5-etyj
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThe H1B is an employment-based visa category for temporary foreign workers in the United States. Every year, the US immigration department receives over 200,000 petitions and selects 85,000 applications through a random process and the U.S. employer must submit a petition for an H1B visa to the US immigration department. This is the most common visa status applied to international students once they complete college or higher education and begin working in a full-time position. The project provides essential information on job titles, preferred regions of settlement, foreign applicants and employers' trends for H1B visa application. According to locations, employers, job titles and salary range make up most of the H1B petitions, so different visualization utilizing tools will be used in order to analyze and interpreted in relation to the trends of the H1B visa to provide a recommendation to the applicant. This report is the base of the project for Visualization of Complex Data class at the George Washington University, some examples in this project has an analysis for the different relevant variables (Case Status, Employer Name, SOC name, Job Title, Prevailing Wage, Worksite, and Latitude and Longitude information) from Kaggle and Office of Foreign Labor Certification(OFLC) in order to see the H1B visa changes in the past several decades. Keywords: H1B visa, Data Analysis, Visualization of Complex Data, HTML, JavaScript, CSS, Tableau, D3.jsDatasetThe dataset contains 10 columns and covers a total of 3 million records spanning from 2011-2016. The relevant columns in the dataset include case status, employer name, SOC name, jobe title, full time position, prevailing wage, year, worksite, and latitude and longitude information.Link to dataset: https://www.kaggle.com/nsharan/h-1b-visaLink to dataset(FY2017): https://www.foreignlaborcert.doleta.gov/performancedata.cfmRunning the codeOpen Index.htmlData ProcessingDoing some data preprocessing to transform the raw data into an understandable format.Find and combine any other external datasets to enrich the analysis such as dataset of FY2017.To make appropriated Visualizations, variables should be Developed and compiled into visualization programs.Draw a geo map and scatter plot to compare the fastest growth in fixed value and in percentages.Extract some aspects and analyze the changes in employers’ preference as well as forecasts for the future trends.VisualizationsCombo chart: this chart shows the overall volume of receipts and approvals rate.Scatter plot: scatter plot shows the beneficiary country of birth.Geo map: this map shows All States of H1B petitions filed.Line chart: this chart shows top10 states of H1B petitions filed. Pie chart: this chart shows comparison of Education level and occupations for petitions FY2011 vs FY2017.Tree map: tree map shows overall top employers who submit the greatest number of applications.Side-by-side bar chart: this chart shows overall comparison of Data Scientist and Data Analyst.Highlight table: this table shows mean wage of a Data Scientist and Data Analyst with case status certified.Bubble chart: this chart shows top10 companies for Data Scientist and Data Analyst.Related ResearchThe H-1B Visa Debate, Explained - Harvard Business Reviewhttps://hbr.org/2017/05/the-h-1b-visa-debate-explainedForeign Labor Certification Data Centerhttps://www.foreignlaborcert.doleta.govKey facts about the U.S. H-1B visa programhttp://www.pewresearch.org/fact-tank/2017/04/27/key-facts-about-the-u-s-h-1b-visa-program/H1B visa News and Updates from The Economic Timeshttps://economictimes.indiatimes.com/topic/H1B-visa/newsH-1B visa - Wikipediahttps://en.wikipedia.org/wiki/H-1B_visaKey FindingsFrom the analysis, the government is cutting down the number of approvals for H1B on 2017.In the past decade, due to the nature of demand for high-skilled workers, visa holders have clustered in STEM fields and come mostly from countries in Asia such as China and India.Technical Jobs fill up the majority of Top 10 Jobs among foreign workers such as Computer Systems Analyst and Software Developers.The employers located in the metro areas thrive to find foreign workforce who can fill the technical position that they have in their organization.States like California, New York, Washington, New Jersey, Massachusetts, Illinois, and Texas are the prime location for foreign workers and provide many job opportunities. Top Companies such Infosys, Tata, IBM India that submit most H1B Visa Applications are companies based in India associated with software and IT services.Data Scientist position has experienced an exponential growth in terms of H1B visa applications and jobs are clustered in West region with the highest number.Visualization utilizing programsHTML, JavaScript, CSS, D3.js, Google API, Python, R, and Tableau
This dataset was created by cavin lobo
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dataset used in the article entitled 'Synthetic Datasets Generator for Testing Information Visualization and Machine Learning Techniques and Tools'. These datasets can be used to test several characteristics in machine learning and data processing algorithms.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.
DVQA is a synthetic question-answering dataset on images of bar-charts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The city of Austin has administered a community survey for the 2015, 2016, 2017, 2018 and 2019 years (https://data.austintexas.gov/City-Government/Community-Survey/s2py-ceb7), to “assess satisfaction with the delivery of the major City Services and to help determine priorities for the community as part of the City’s ongoing planning process.” To directly access this dataset from the city of Austin’s website, you can follow this link https://cutt.ly/VNqq5Kd. Although we downloaded the dataset analyzed in this study from the former link, given that the city of Austin is interested in continuing administering this survey, there is a chance that the data we used for this analysis and the data hosted in the city of Austin’s website may differ in the following years. Accordingly, to ensure the replication of our findings, we recommend researchers to download and analyze the dataset we employed in our analyses, which can be accessed at the following link https://github.com/democratizing-data-science/MDCOR/blob/main/Community_Survey.csv. Replication Features or Variables The community survey data has 10,684 rows and 251 columns. Of these columns, our analyses will rely on the following three indicators that are taken verbatim from the survey: “ID”, “Q25 - If there was one thing you could share with the Mayor regarding the City of Austin (any comment, suggestion, etc.), what would it be?", and “Do you own or rent your home?”
This repository accompanying the article “DEVILS: a tool for the visualization of large datasets with a high dynamic range” contains the following: Extended Material of the article An example raw dataset corresponding to the images shown in Fig. 3 A workflow description that demonstrates the use of the DEVILS workflow with BigStitcher. Two scripts (“CLAHE_Parameters_test.ijm” and a “DEVILS_Parallel_tests.groovy”) used for Figure S2, S3 and S4.
This dataset was created by kirtida dalvi
The HCUP Visualization of Inpatient Trends in COVID-19 and Other Conditions displays State-specific monthly trends in inpatient stays related to COVID-19 and other conditions, and facilitates comparisons of the number of hospital discharges, the average length of stays, and in-hospital mortality rates across patient/stay characteristics and States. This information is based on the HCUP State Inpatient Databases (SID), starting with 2018 data, plus newer annual and quarterly inpatient data, if and when available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Interactive data map of COVID-19 cases around the world. Shows number of total cases and deaths by country over time, starting from December 31, 2019 to present time.
The map shows the georeferencing of the museums and collections present in the Liguria Region. The data derive from the Liguria Region's official database, managed by the Culture and Entertainment sector. Coverage: Entire Regional Territory - Origin: Georeferencing on Regional Technical Map - sc. 1:5000 - ETRF89 Projection System
The Scientific Visualization Studio hosts a collection of media galleries on Earth, air, and space themes.
The map shows the georeferencing of the architectures present in the Liguria Region. The data derive from the Liguria Region's official database, managed by the Culture and Entertainment sector. Coverage: Entire Regional Territory - Origin: Georeferencing on Regional Technical Map - sc. 1:5000 - ETRF89 Projection System
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
This dataset was created by Chandra Shekhar
Released under Other (specified in description)