Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Iris dataset is a classic and widely used dataset in machine learning for classification tasks. It consists of measurements of different iris flowers, including sepal length, sepal width, petal length, and petal width, along with their corresponding species. With a total of 150 samples, the dataset is balanced and serves as an excellent choice for understanding and implementing classification algorithms. This notebook explores the dataset, preprocesses the data, builds a decision tree classification model, and evaluates its performance, showcasing the effectiveness of decision trees in solving classification problems.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F8d3442e6c82d8026c6a448e4780ab38c%2FPicture2.png?generation=1688638685268853&alt=media" alt="">
9. Plot the decision tree
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F9ab0591e323dc30fe116c79f6d014d06%2FPicture3.png?generation=1688638747644320&alt=media" alt="">
Average customer churn is 27%. The churn can take place if the tenure is more than >=7.5 and there is no internet service
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F16080ac04d3743ec238227e1ef2c8269%2FPicture4.png?generation=1688639197455166&alt=media" alt="">
Significant variables are Internet Service, Tenure and the least significant are Streaming Movies, Tech Support.
Run library(randomForest). Here we are using the default ntree (500) and mtry (p/3) where p is the number of
independent variables.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc27fe7e83f0b53b7e067371b69c7f4a7%2FPicture6.png?generation=1688640478682685&alt=media" alt="">
Through confusion matrix, accuracy is coming 79.27%. The accuracy is marginally higher than that of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and much higher when predicting "Yes".
Plot the model showing which variables reduce the gini impunity the most and least. Total charges and tenure reduce the gini impunity the most while phone service has the least impact.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fec25fc3ba74ab9cef1a81188209512b1%2FPicture7.png?generation=1688640726235724&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F50aa40e5dd676c8285020fd2fe627bf1%2FPicture8.png?generation=1688640896763066&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F87211e1b218c595911fbe6ea2806e27a%2FPicture9.png?generation=1688641103367564&alt=media" alt="">
Tune the model mtry=2 has the lowest OOB error rate
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6057af5bb0719b16f1a97a58c3d4aa1d%2FPicture10.png?generation=1688641391027971&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc7045eba4ee298c58f1bd0230c24c00d%2FPicture11.png?generation=1688641605829830&alt=media" alt="">
Use random forest with mtry = 2 and ntree = 200
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F01541eff1f9c6303591aa50dd707b5f5%2FPicture12.png?generation=1688641634979403&alt=media" alt="">
Through confusion matrix, accuracy is coming 79.71%. The accuracy is marginally higher than that of default (when ntree was 500 and mtry was 4) i.e 79.27% and of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and m...
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Basic telco churn dataset used to challenge students and academics
Info | Description |
---|---|
file | churn_100k.csv |
n_samples | 101K |
n_features | 28 |
pct_missing | 1% |
numeric_features = ['monthly_minutes', 'customerServiceCalls', 'streaming_minutes', 'TotalBilled', 'PrevBalance', 'latePayments']
categorical_features = ['ip_address_asn', 'phone_area_code', 'customer_reg_date', 'email_domain', 'phoneModel', 'billing_city', 'billing_postal', 'billing_state', 'partner', 'PhoneService', 'MultipleLines', 'streamingPlan', 'mobileHotspot', 'wifiCallingText', 'OnlineBackup', 'device_protection', 'number_phones', 'contract_code', 'currency_code', 'maling_code', 'paperlessBilling', 'paymentMethod']
Train AUC Score : 0.967279 Eval AUC Score : 0.958073 Test AUC Score : 0.946909
Fun and simple dataset to practice with.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The following fruits, vegetables and nuts and are included: Apples (different varieties: Crimson Snow, Golden, Golden-Red, Granny Smith, Pink Lady, Red, Red Delicious), Apricot, Avocado, Avocado ripe, Banana (Yellow, Red, Lady Finger), Beans, Beetroot Red, Blackberry, Blueberry, Cabbage, Caju seed, Cactus fruit, Cantaloupe (2 varieties), Carambula, Carrot, Cauliflower, Cherimoya, Cherry (different varieties, Rainier), Cherry Wax (Yellow, Red, Black), Chestnut, Clementine, Cocos, Corn (with husk), Cucumber (ripened, regular), Dates, Eggplant, Fig, Ginger Root, Goosberry, Granadilla, Grape (Blue, Pink, White (different varieties)), Grapefruit (Pink, White), Guava, Hazelnut, Huckleberry, Kiwi, Kaki, Kohlrabi, Kumsquats, Lemon (normal, Meyer), Lime, Lychee, Mandarine, Mango (Green, Red), Mangostan, Maracuja, Melon Piel de Sapo, Mulberry, Nectarine (Regular, Flat), Nut (Forest, Pecan), Onion (Red, White), Orange, Papaya, Passion fruit, Peach (different varieties), Pepino, Pear (different varieties, Abate, Forelle, Kaiser, Monster, Red, Stone, Williams), Pepper (Red, Green, Orange, Yellow), Physalis (normal, with Husk), Pineapple (normal, Mini), Pistachio, Pitahaya Red, Plum (different varieties), Pomegranate, Pomelo Sweetie, Potato (Red, Sweet, White), Quince, Rambutan, Raspberry, Redcurrant, Salak, Strawberry (normal, Wedge), Tamarillo, Tangelo, Tomato (different varieties, Maroon, Cherry Red, Yellow, not ripened, Heart), Walnut, Watermelon, Zucchini (green and dark).
The dataset has 5 major branches:
-The 100x100 branch, where all images have 100x100 pixels. See _fruits-360_100x100_ folder.
-The original-size branch, where all images are at their original (captured) size. See _fruits-360_original-size_ folder.
-The meta branch, which contains additional information about the objects in the Fruits-360 dataset. See _fruits-360_dataset_meta_ folder.
-The multi branch, which contains images with multiple fruits, vegetables, nuts and seeds. These images are not labeled. See _fruits-360_multi_ folder.
-The _3_body_problem_ branch where the Training and Test folders contain different (varieties of) the 3 fruits and vegetables (Apples, Cherries and Tomatoes). See _fruits-360_3-body-problem_ folder.
Mihai Oltean, Fruits-360 dataset, 2017-
Total number of images: 138704.
Training set size: 103993 images.
Test set size: 34711 images.
Number of classes: 206 (fruits, vegetables, nuts and seeds).
Image size: 100x100 pixels.
Total number of images: 58363.
Training set size: 29222 images.
Validation set size: 14614 images
Test set size: 14527 images.
Number of classes: 90 (fruits, vegetables, nuts and seeds).
Image size: various (original, captured, size) pixels.
Total number of images: 47033.
Training set size: 34800 images.
Test set size: 12233 images.
Number of classes: 3 (Apples, Cherries, Tomatoes).
Number of varieties: Apples = 29; Cherries = 12; Tomatoes = 19.
Image size: 100x100 pixels.
Number of classes: 26 (fruits, vegetables, nuts and seeds).
Number of images: 150.
image_index_100.jpg (e.g. 31_100.jpg) or
r_image_index_100.jpg (e.g. r_31_100.jpg) or
r?_image_index_100.jpg (e.g. r2_31_100.jpg)
where "r" stands for rotated fruit. "r2" means that the fruit was rotated around the 3rd axis. "100" comes from image size (100x100 pixels).
Different varieties of the same fruit (apple, for instance) are stored as belonging to different classes.
r?_image_index.jpg (e.g. r2_31.jpg)
where "r" stands for rotated fruit. "r2" means that the fruit was rotated around the 3rd axis.
The name of the image files in the new version does NOT contain the "_100" suffix anymore. This will help you to make the distinction between the original-size branch and the 100x100 branch.
The file's name is the concatenation of the names of the fruits inside that picture.
The Fruits-360 dataset can be downloaded from:
Kaggle https://www.kaggle.com/moltean/fruits
GitHub https://github.com/fruits-360
Fruits and vegetables were planted in the shaft of a low-speed motor (3 rpm) and a short movie of 20 seconds was recorded.
A Logitech C920 camera was used for filming the fruits. This is one of the best webcams available.
Behind the fruits, we placed a white sheet of paper as a background.
Here i...
The ATIS dataset is a standard benchmark dataset widely used as an intent classification and slot filling task.
The data is imported from https://github.com/yvchen/JointSLU but is cleaned and resplitted by removing duplicated samples and uncommon labels (see the kaggle kernel atis-dataset-clean-re-split-kernel used for creating this dataset for additional detalis).
Thanks to Yun-Nung (Vivian) Chen for publishing the original dataset.
I have previously found a version of the ATIS dataset in the MS CNTK and have written a converter as a jupyter notebook kpe/notebooks to make the dataset easily accessible in python. However I much more like the simplicity of text format representation used by yvchen/JointSLU.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a classic and very widely used dataset in machine learning and statistics, often serving as a first dataset for classification problems. Introduced by the British statistician and biologist Ronald Fisher in his 1936 paper "The use of multiple measurements in taxonomic problems," it is a foundational resource for learning classification algorithms.
Overview:
The dataset contains measurements for 150 samples of iris flowers. Each sample belongs to one of three species of iris:
For each flower, four features were measured:
The goal is typically to build a model that can classify iris flowers into their correct species based on these four features.
File Structure:
The dataset is usually provided as a single CSV (Comma Separated Values) file, often named iris.csv
or similar. This file typically contains the following columns:
Content of the Data:
The dataset contains an equal number of samples (50) for each of the three iris species. The measurements of the sepal and petal dimensions vary between the species, allowing for their differentiation using machine learning models.
How to Use This Dataset:
iris.csv
file.Citation:
When using the Iris dataset, it is common to cite Ronald Fisher's original work:
Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2), 179-188.
Data Contribution:
Thank you for providing this classic and fundamental dataset to the Kaggle community. The Iris dataset remains an invaluable resource for both beginners learning the basics of classification and experienced practitioners testing new algorithms. Its simplicity and clear class separation make it an ideal starting point for many data science projects.
If you find this dataset description helpful and the dataset itself useful for your learning or projects, please consider giving it an upvote after downloading. Your appreciation is valuable!
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
.npz
format, ensuring efficient storage, accessibility, and consistency across training and testing phases. Not seeing a result you expected?
Learn how you can add new datasets to our index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Iris dataset is a classic and widely used dataset in machine learning for classification tasks. It consists of measurements of different iris flowers, including sepal length, sepal width, petal length, and petal width, along with their corresponding species. With a total of 150 samples, the dataset is balanced and serves as an excellent choice for understanding and implementing classification algorithms. This notebook explores the dataset, preprocesses the data, builds a decision tree classification model, and evaluates its performance, showcasing the effectiveness of decision trees in solving classification problems.