21 datasets found
  1. Mushrooms images classification 215

    • kaggle.com
    zip
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniil Onishchenko (2023). Mushrooms images classification 215 [Dataset]. https://www.kaggle.com/datasets/daniilonishchenko/mushrooms-images-classification-215/code
    Explore at:
    zip(1660981536 bytes)Available download formats
    Dataset updated
    Jun 10, 2023
    Authors
    Daniil Onishchenko
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    Context

    This dataset contains 3122 images (512x512) of 215 different mushrooms (at least 4 images per class). mushrooms.txt contains names of all the mushrooms in the dataset.

    Legal notice

    The dataset was created with the images, that were obtained from WildFoodUK. I'm not responsible for the use of the dataset

    Inspiration

    The original idea was to create an android application with mushrooms detection capabilities, but all that was done is this dataset.

  2. Edible & Poisonous Mushroom Classification

    • kaggle.com
    zip
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benedictus Jason (2025). Edible & Poisonous Mushroom Classification [Dataset]. https://www.kaggle.com/datasets/benedictusjason/edible-and-poisonous-mushroom-classification
    Explore at:
    zip(1254948073 bytes)Available download formats
    Dataset updated
    Mar 16, 2025
    Authors
    Benedictus Jason
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains 2,820 high-quality images of various mushroom species, meticulously categorized into edible and poisonous classes. The dataset provides a diverse collection of 25 edible mushroom species and 22 poisonous mushroom species, capturing a wide range of visual features such as color, shape, texture, and size variations.

    To ensure an optimal data distribution for machine learning and deep learning applications, the dataset has been strategically split into three subsets:

    Training Set (80%) – Comprising 2,256 images, this subset serves as the primary source for model learning, offering a comprehensive range of mushroom species. Validation Set (10%) – Consisting of 282 images, this subset is used for hyperparameter tuning and performance evaluation to mitigate overfitting. Test Set (10%) – Including 282 images, this subset is reserved for final model evaluation to assess its generalization capability on unseen data. The dataset is structured into two main categories:

    Edible Mushrooms (25 species) Poisonous Mushrooms (22 species) Unlike raw datasets that maintain species-specific subdirectories, this dataset organizes images directly under their respective labels (edible/ and poisonous/). This format simplifies its integration with deep learning frameworks such as TensorFlow, PyTorch, and Keras, making it well-suited for image classification tasks, mushroom species recognition, and toxicity prediction.

    This dataset can be applied to various domains, including computer vision research, mycology studies, AI-driven foraging assistance, and food safety analysis.

    Collection Credit: https://www.kaggle.com/datasets/yoonjunggyu/25-edible-mushroom-and-25-poisonous-mushroom

  3. edible and poisonous fungi

    • kaggle.com
    zip
    Updated Aug 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    marcos volpato (2021). edible and poisonous fungi [Dataset]. https://www.kaggle.com/datasets/marcosvolpato/edible-and-poisonous-fungi
    Explore at:
    zip(269351528 bytes)Available download formats
    Dataset updated
    Aug 8, 2021
    Authors
    marcos volpato
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Context

    We created this dataset as part of our school's research project. As we didn't find something similar when we started, we decided to publish it here so that future research with mushrooms and AI can benefit from it.

    Content

    The dataset is separated in 2 classes , mushroom sporocarps and not mushroom sporocarps. Each class has 2 subclasses, edible and non-edible(includes medicinal, unpalatable and hallucinogenic fungi).

    Acknowledgements

    A HUGE thanks to my colleagues: Gabriel and Bianca. Without you guys this dataset wouldn't be possible

    Inspiration

    (◕ᴗ◕✿) Be cool!

  4. Data from: Mushroom Classification Dataset

    • kaggle.com
    zip
    Updated May 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhecheng Li (2023). Mushroom Classification Dataset [Dataset]. https://www.kaggle.com/datasets/lizhecheng/mushroom-classification/data
    Explore at:
    zip(1150739416 bytes)Available download formats
    Dataset updated
    May 26, 2023
    Authors
    Zhecheng Li
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Description

    This dataset is used to classify 9 kinds of mushroom.
    If you like this dataset and find it useful, please give a thumbs up 👍👍👍👍
    💥💥💥💥💥
    Pay attention that there are some truncated images in this dataset(maybe only one, I'm not sure), so you are not recommended to use function like ImageFolder to load the whole dataset.
    Otherwise, you will get OS Error, which I have shown you in my notebook. It's better to rewrite Dataset class.

  5. Mushroom species

    • kaggle.com
    zip
    Updated Sep 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Almaz Dautov (2023). Mushroom species [Dataset]. https://www.kaggle.com/datasets/thehir0/mushroom-species
    Explore at:
    zip(10152025719 bytes)Available download formats
    Dataset updated
    Sep 6, 2023
    Authors
    Almaz Dautov
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Data exported from inaturalist with

    place: Russia Federation

    tag: Fungi Including Lichens

    Categories

    1. Amanita citrina
    2. Amanita muscaria
    3. Amanita pantherina
    4. Amanita rubescens
    5. Apioperdon pyriforme
    6. Armillaria borealis
    7. Artomyces pyxidatus
    8. Bjerkandera adusta
    9. Boletus edulis
    10. Boletus reticulatus
    11. Calocera viscosa
    12. Calycina citrina
    13. Cantharellus cibarius
    14. Cerioporus squamosus
    15. Cetraria islandica
    16. Chlorociboria aeruginascens
    17. Chondrostereum purpureum
    18. Cladonia fimbriata
    19. Cladonia rangiferina
    20. Cladonia stellaris
    21. Clitocybe nebularis
    22. Coltricia perennis
    23. Coprinellus disseminatus
    24. Coprinellus micaceus
    25. Coprinopsis atramentaria
    26. Coprinus comatus
    27. Crucibulum laeve
    28. Daedaleopsis confragosa
    29. Daedaleopsis tricolor
    30. Evernia mesomorpha
    31. Evernia prunastri
    32. Flammulina velutipes
    33. Fomes fomentarius
    34. Fomitopsis betulina
    35. Fomitopsis pinicola
    36. Ganoderma applanatum
    37. Graphis scripta
    38. Gyromitra esculenta
    39. Gyromitra gigas
    40. Gyromitra infula
    41. Hericium coralloides
    42. Hygrophoropsis aurantiaca
    43. Hypholoma fasciculare
    44. Hypholoma lateritium
    45. Hypogymnia physodes
    46. Imleria badia
    47. Inonotus obliquus
    48. Kuehneromyces mutabilis
    49. Lactarius deliciosus
    50. Lactarius torminosus
    51. Lactarius turpis
    52. Laetiporus sulphureus
    53. Leccinum albostipitatum
    54. Leccinum aurantiacum
    55. Leccinum scabrum
    56. Leccinum versipelle
    57. Lepista nuda
    58. Lobaria pulmonaria
    59. Lycoperdon perlatum
    60. Macrolepiota procera
    61. Merulius tremellosus
    62. Mutinus ravenelii
    63. Nectria cinnabarina
    64. Panellus stipticus
    65. Parmelia sulcata
    66. Paxillus involutus
    67. Peltigera aphthosa
    68. Peltigera praetextata
    69. Phaeophyscia orbicularis
    70. Phallus impudicus
    71. Phellinus igniarius
    72. Phellinus tremulae
    73. Phlebia radiata
    74. Pholiota aurivella
    75. Pholiota squarrosa
    76. Physcia adscendens
    77. Platismatia glauca
    78. Pleurotus ostreatus
    79. Pleurotus pulmonarius
    80. Pseudevernia furfuracea
    81. Rhytisma acerinum
    82. Sarcomyxa serotina
    83. Sarcoscypha austriaca
    84. Sarcosoma globosum
    85. Schizophyllum commune
    86. Stereum hirsutum
    87. Stropharia aeruginosa
    88. Suillus granulatus
    89. Suillus grevillei
    90. Suillus luteus
    91. Trametes hirsuta
    92. Trametes ochracea
    93. Trametes versicolor
    94. Tremella mesenterica
    95. Trichaptum biforme
    96. Tricholomopsis rutilans
    97. Urnula craterium
    98. Verpa bohemica
    99. Vulpicida pinastri
    100. Xanthoria parietina
  6. 12 Mushroom Species Dataset

    • kaggle.com
    zip
    Updated Mar 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MD. HASAN AHMAD (2024). 12 Mushroom Species Dataset [Dataset]. https://www.kaggle.com/datasets/mdhasanahmad/12-mushroom-species-dataset
    Explore at:
    zip(111447229 bytes)Available download formats
    Dataset updated
    Mar 23, 2024
    Authors
    MD. HASAN AHMAD
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description:

    This dataset comprises images of 12 distinct species of mushrooms, collected from various sources, primarily sourced from Mushroom World. The species included are Agaricus, Amanita, Boletus, Cortinarius, Entoloma, Exidia, Hygrocybe, Inocybe, Lactarius, Pluteus, Russula, and Suillus, representing a diverse array of fungal taxa.

    Dataset Contents: - Images of mushrooms from each species, captured under varying conditions. - Ground truth labels are provided for each image, indicating the species of mushroom depicted. - Images have been processed using GrabCut segmentation to isolate the mushrooms from their backgrounds, facilitating easier analysis and classification.

    Applications:

    • Classification and identification of mushroom species using machine learning and computer vision techniques.
    • Research into fungal taxonomy and biodiversity.
    • Educational purposes, including mushroom identification guides and apps.

    Usage Notes:

    • This dataset is suitable for training and testing machine learning models for mushroom species classification.
    • Researchers and enthusiasts interested in mycology can utilize this dataset for various analyses and studies.
    • Proper citation of the original data sources, including Mushroom World, is encouraged when using this dataset in publications or projects.

    Acknowledgments:

    • The source of the images is primarily from Mushroom World, and credit is given to them for providing the foundational data for this dataset.
    • The GrabCut segmentation technique used to process the images was applied to isolate the mushrooms from their backgrounds, enhancing the usability of the dataset for classification tasks.

    Note to Users: - Please ensure compliance with any licensing or usage restrictions associated with the original images obtained from Mushroom World. - Feedback and contributions to enhance the dataset are welcome and appreciated.

    Published Paper similar to this dataset: https://www.hindawi.com/journals/jfq/2022/1173102/

  7. Mushrooms Image classification

    • kaggle.com
    zip
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irakli DD (2024). Mushrooms Image classification [Dataset]. https://www.kaggle.com/datasets/iraklidd/mushrooms-image-classification/discussion?sort=undefined
    Explore at:
    zip(9790253 bytes)Available download formats
    Dataset updated
    Feb 2, 2024
    Authors
    Irakli DD
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Irakli DD

    Released under MIT

    Contents

  8. Data from: Mushroom classification

    • kaggle.com
    zip
    Updated Feb 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mathieu DUVERNE (2024). Mushroom classification [Dataset]. https://www.kaggle.com/datasets/mathieuduverne/mushroom-classification/code
    Explore at:
    zip(481150707 bytes)Available download formats
    Dataset updated
    Feb 4, 2024
    Authors
    Mathieu DUVERNE
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset includes 8857 images. Mushroom are annotated in COCO format.

    The following pre-processing was applied to each image: * Auto-orientation of pixel data (with EXIF-orientation stripping) * Resize to 640x640 (Stretch)

    The following augmentation was applied to create 3 versions of each source image: * 50% probability of horizontal flip * 50% probability of vertical flip

    The structure:

    dataset-directory/
    ├─ README.dataset.txt
    ├─ README.roboflow.txt
    ├─ train
    │ ├─ train-image-1.jpg
    │ ├─ train-image-1.jpg
    │ ├─ ...
    │ └─ _annotations.coco.json
    ├─ test
    │ ├─ test-image-1.jpg
    │ ├─ test-image-1.jpg
    │ ├─ ...
    │ └─ _annotations.coco.json
    └─ valid
      ├─ valid-image-1.jpg
      ├─ valid-image-1.jpg
      ├─ ...
      └─ _annotations.coco.json
    

    To convert the format to YOLO annotations, go to roboflow.

  9. Mushrooms

    • kaggle.com
    zip
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric (2024). Mushrooms [Dataset]. https://www.kaggle.com/datasets/earobinson/massachusetts-mushrooms
    Explore at:
    zip(226378693 bytes)Available download formats
    Dataset updated
    Jul 4, 2024
    Authors
    Eric
    Description

    Mushrooms of the Northeast United States

    Mushrooms of the Northeast United States is a collection of images of the fruiting bodies (mushrooms) of various species of fungus common to the Northeast and New England area of North America.

    Technical detalils The images are in unedited JPG format and appear as scraped from the web. The images are intended for use in the training of machine learning models for image classification. They have been subdivided into directories according to their common species name, and the directory labels can be used for labeling ground truth during training of machine learning models.

    Versioning This initial version of the image collection have not been hand-labeled, but represent only the keyword search under which they were initially collected from the web. Future versions will be hand culled and mislabeled or otherwise inappropriate images will be removed to improve data quality. Additionally it is hoped that the collection will be expanded to include a larger number of species.
    The current version, v0.2, includes images of chicken of the woods. destroying angel, fly agaric, honey mushroom, leafy brain, lobster mushroom, oyster mushroom and witch's butter. The collection currently contains approximately 440 images over 8 categories, and totals 230.4 MB.

  10. BiH mushrooms

    • kaggle.com
    zip
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erol Terovic (2023). BiH mushrooms [Dataset]. https://www.kaggle.com/datasets/erolterovic/bih-mushrooms
    Explore at:
    zip(399902588 bytes)Available download formats
    Dataset updated
    Jan 23, 2023
    Authors
    Erol Terovic
    Area covered
    Bosnia and Herzegovina
    Description

    Mushroom image dataset for classification, based on mushrooms in Bosnia. Sources: mushroom species pulled from "Gljive: šumsko bogatstvo Bosne i Hercegovine" book by Hajrudin Rudi Hasanbegović. Mushroom images for dataset based on https://www.kaggle.com/datasets/derekkunowilliams/mushrooms and https://github.com/bechtle/mushroomobser-dataset

  11. Mushroom dataset with a variety of species

    • kaggle.com
    zip
    Updated Apr 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iftekhar08 (2024). Mushroom dataset with a variety of species [Dataset]. https://www.kaggle.com/datasets/iftekhar08/mo-106/code
    Explore at:
    zip(2050008681 bytes)Available download formats
    Dataset updated
    Apr 28, 2024
    Authors
    Iftekhar08
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset contains 27,436 images of mushrooms, categorized into 94 species. The distribution among species varies, with the largest species containing 581 images and the smallest having 212, while the average size is 291 images per species. The mushrooms are classified into three categories: edible, non-edible, and toxic.

    Edible mushrooms include: 1. Volvopluteus gloiocephalus 2. Agaricus augustus 3. Amanita amerirubescens 4. Amanita calyptrodermsa 5. Armillaria mellea (may cause allergic reactions or stomach upset in some individuals) 6. Armillaria tabescens 7. Artomyces pyxidatus 8. Bolbitius titubans 9. Boletus pallidus 10. Boletus rex-veris 11. Cantharellus californicus 12. Cantharellus cinnabarinus 13. Cerioporus squamosus (edible when young) 14. Chlorophyllum brunneum 15. Clitocybe nuda 16. Coprinellus micaceus 17. Coprinus comatus (used in medicine and considered delicious) 18. Flammulina velutipes 19. Entoloma abortivum 20. Ganoderma applanatum (inedible when raw, cooked it's edible) 21. Ganoderma oregonense 22. Grifola frondosa (may cause mild gastrointestinal distress) 23. Hericium coralloides 24. Hericium erinaceus 25. Hypomyces lactifluorum 26. Ischnoderma resinosum 27. Laccaria ochropurpurea 28. Lacrymaria lacrymabunda 29. Lactarius indigo 30. Laetiporus sulphureus 31. Lycoperdon perlatum 32. Lycoperdon pyriforme 33. Mycena haematopus 34. Pleurotus ostreatus 35. Pleurotus pulmonarius 36. Pluteus cervinus 37. Psathyrella candolleana 38. Pseudohydnum gelatinosum 39. Psilocybe cyanescens 40. Psilocybe muliercula 41. Psilocybe pelliculosa 42. Psilocybe zapotecorum 43. Retiboletus ornatipes 44. Sarcomyxa serotina 45. Stropharia ambigua 46. Stropharia rugosoannulata 47. Suillus americanus 48. Suillus luteus 49. Suillus spraguei 50. Tricholoma murrillianum

    Non-edible mushrooms include:

    1. Tylopilus rubrobrunneus (bitter taste)
    2. Tylopilus felleus (bitter taste)
    3. Coprinopsis lagopus
    4. Crucibulum laeve
    5. Cryptoporus volvatus
    6. Fomitopsis mounceae (toxic but potentially medicinal)
    7. Ganoderma curtisii
    8. Ganoderma tsugae
    9. Gliophorus psittacinus (mildly poisonous)
    10. Gloeophyllum sepiarium
    11. Gymnopilus luteofolius (bitter taste)
    12. Laricifomes officinalis (bitter taste, used in medicine)
    13. Leucoagaricus americanus (edible but should be avoided due to confusion with toxic species)
    14. Leucoagaricus leucothites (generally edible but slightly poisonous)
    15. Lycogala epidendrum (not toxic but may cause gastrointestinal discomfort)
    16. Mycena leaiana (edibility unknown)
    17. Panaeolus foenisecii
    18. Panellus stipticus (bitter taste)
    19. Phaeolus schweinitzii (bitter taste)
    20. Phyllotopsis nidulans
    21. Psilocybe caerulescens (edibility unknown)
    22. Psilocybe cubensis (information not available)
    23. Psilocybe neoxalapensis (no information available)
    24. Schizophyllum commune
    25. Stereum ostrea
    26. Tapinella atrotomentosa
    27. Trametes versicolor (not directly edible)
    28. Trametes gibbosa
    29. Trametes betulina
    30. Trichaptum biforme
    31. Tricholomopsis rutilans (bitter taste)
    32. Tubaria furfuracea

    Toxic mushrooms include: 1. Agaricus xanthodermus 2. Amanita augusta 3. Amanita brunnescens 4. Amanita flavoconia 5. Amanita muscaria 6. Amanita persicina 7. Amanita velosa 8. Chlorophyllum molybdites 9. Daedaleopsis confragosa 10. Galerina marginata 11. Hygrophoropsis aurantiaca 12. Hypholoma fasciculare 13. Hypholoma lateritium 14. Leratiomyces ceres 15. Omphalotus illudens 16. Omphalotus olivascens 17. Panaeolus cinctulus 18. Panaeolus papilionaceus 19. Phlebia tremellosa 20. Psilocybe allenii 21. Psilocybe azurescens 22. Psilocybe aztecorum 23. Psilocybe ovoideocystidiata

  12. Mushroom Dataset 8 Classes

    • kaggle.com
    zip
    Updated Nov 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Viktor Modroczký (2023). Mushroom Dataset 8 Classes [Dataset]. https://www.kaggle.com/datasets/viktormodroczky/mushroom-dataset-8-classes
    Explore at:
    zip(5794839613 bytes)Available download formats
    Dataset updated
    Nov 25, 2023
    Authors
    Viktor Modroczký
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This dataset was created as part of my bachelor's thesis. Images collected from Mushroom Observer and FGVCx. The dataset contains train and test subsets. Dataset has been augmented. Images are sized 299x299 pixels. There are 8 classes of mushrooms.

    Acknowledgements:

  13. Mushrooms classification - Common genus's images

    • kaggle.com
    zip
    Updated Mar 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CatoDogo (2019). Mushrooms classification - Common genus's images [Dataset]. https://www.kaggle.com/datasets/maysee/mushrooms-classification-common-genuss-images/discussion
    Explore at:
    zip(1990850630 bytes)Available download formats
    Dataset updated
    Mar 3, 2019
    Authors
    CatoDogo
    Description

    Content

    There is 9 folders of images of most common Northern European mushrooms genuses inside of this dataset. Each folder consist of from 300 to 1500 selected images of mushrooms genuses. Labels are the folder's names.

    Acknowledgements

    Special thanks to mycologist's society of Northern Europe, who provided the sources of most common mushrooms in this area and checked data and labels.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

  14. Oyster mushroom dataset-Yolov8

    • kaggle.com
    zip
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AthiraSivachandran (2023). Oyster mushroom dataset-Yolov8 [Dataset]. https://www.kaggle.com/datasets/athirasivachandran/oyster-mushroom-dataset-yolov8
    Explore at:
    zip(1467186401 bytes)Available download formats
    Dataset updated
    Sep 28, 2023
    Authors
    AthiraSivachandran
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The oyster mushroom data set was annotated for my master thesis for finding the matured oyster mushrooms from not matured and overdue mushrooms , the images are annotated for YOLO version 8 CNN based algorithm. The bounding box coordinates along with the class labels with the same image names used for training. The Thesis can be found out in my GitHub page https://github.com/MSAthira

  15. Mushroom species recognition

    • kaggle.com
    zip
    Updated Jun 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Cofone (2025). Mushroom species recognition [Dataset]. https://www.kaggle.com/datasets/zlatan599/mushroom1/versions/1/code
    Explore at:
    zip(12118896052 bytes)Available download formats
    Dataset updated
    Jun 6, 2025
    Authors
    Leonardo Cofone
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This dataset contains images of different mushroom species, divided into over 100 classes, each corresponding to a specific species. The images show mushrooms in various growth stages and conditions, making the dataset ideal for fine-grained classification tasks. The data is organized into three CSV files: train.csv for training, val.csv for validation and optimization of the model during training, and test.csv for the final performance evaluation. Each CSV file includes image paths and corresponding species labels, making it easy to use for machine learning models.

  16. Mushrooms

    • kaggle.com
    zip
    Updated May 24, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Derek Kuno-Williams (2022). Mushrooms [Dataset]. https://www.kaggle.com/datasets/derekkunowilliams/mushrooms
    Explore at:
    zip(78111770 bytes)Available download formats
    Dataset updated
    May 24, 2022
    Authors
    Derek Kuno-Williams
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    Contains images downloaded from google of different classes of mushrooms listed on Wikipedia. These classes are deadly, poisonous, conditionally edible, and edible. Additionally, the genus and species is listed for each species in the format, Genus_species. This dataset could be used to classify by species, genus, or if edible. Possible inaccuracies in this dataset may lead to misclassification of edible and inedible species. Please ensure that the dataset is not used to determine the safety of consuming mushroom species.

  17. Plant Pathogen Classification

    • kaggle.com
    zip
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sujal Limje (2024). Plant Pathogen Classification [Dataset]. https://www.kaggle.com/datasets/sujallimje/plant-pathogens
    Explore at:
    zip(25414029332 bytes)Available download formats
    Dataset updated
    Apr 12, 2024
    Authors
    Sujal Limje
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Overview

    The Plant Pathogen Classification Dataset comprises a diverse collection of images depicting various plant diseases caused by pathogens such as fungi, bacteria, viruses, pests and seperate class of healthy leaves. Each image in the dataset is storedwith the corresponding disease type, providing valuable information for researchers and practitioners in plant pathology and agriculture.

    Dataset Composition

    The dataset contains high-resolution images captured under different lighting conditions and perspectives, showcasing symptoms of plant diseases across multiple plant species.

    Key Features

    Disease Diversity

    Covers a wide range of plant species and diseases, including common pathogens affecting crops, ornamental plants, and trees.

    Image Variability

    Includes images captured under varying environmental conditions and growth stages, ensuring robustness and generalization of classification models.

    Potential Applications

    Disease Detection

    Enables the development of machine learning models for automated detection and classification of plant diseases, aiding in early diagnosis and mitigation strategies.

    Crop Management

    Supports precision agriculture initiatives by providing tools for monitoring and managing disease outbreaks, optimizing crop yield and quality.

    Research and Education

    Serves as a valuable resource for researchers, educators, and practitioners in plant pathology, fostering innovation and knowledge dissemination in the field.

  18. DeFungi: Microscopic Fungi Image Classification

    • kaggle.com
    Updated Oct 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2023). DeFungi: Microscopic Fungi Image Classification [Dataset]. https://www.kaggle.com/joebeachcapital/defungi/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 19, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Joakim Arvidsson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DeFungi is a dataset for direct mycological examination of microscopic fungi images. The images are from superficial fungal infections caused by yeasts, moulds, or dermatophyte fungi. The images have been manually labelled into five classes and curated with a subject matter expert assistance. The images have been cropped with automated algorithms to produce the final dataset.

    Introductory Paper

    P456 Defungi: direct mycological examination of microscopic fungi images

    By C. Sopo, Farshid Hajati, S. Gheisari. 2021 Published in Medical Mycology

  19. Basic datasets

    • kaggle.com
    zip
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pascal (2024). Basic datasets [Dataset]. https://www.kaggle.com/datasets/pyim59/basic-datasets
    Explore at:
    zip(2343887 bytes)Available download formats
    Dataset updated
    Apr 1, 2024
    Authors
    Pascal
    Description

    Ces datasets sont utilisés pour le cours de Centrale Lille sur le Machine Learning de Pascal Yim (Image générée avec ideogram.ai)

    Régression

    "datareg_xxx_yyy.csv"

    Exemples simples pour la regression Par exemple "datareg_cos_300.csv" est un ensemble de 300 points suivant un cosinus bruité avec deux colonnes 'x' et 'y'

    "housing.csv"

    Estimation de la valeur moyenne des maisons (MEDV) par quartier en fonction de différentes données : - RM : nombre de chambres - LSTAT : mesure du taux de pauvreté - PTRATIO : mesure du taux d'encadrement par élève dans les écoles

    Version simplifiée du dataset original UCI

    Source : https://www.kaggle.com/datasets/schirmerchad/bostonhoustingmlnd

    "kc_house_data.csv"

    Prédiction de prix de maisons aux alentours de Seattle (district de King County)

    Source : https://www.kaggle.com/datasets/harlfoxem/housesalesprediction

    "house_prices.csv"

    Prédiction de prix de maisons - Compétition Kaggle

    Source : https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data?select=train.csv

    Classification

    "geyser.csv"

    Le geyser « Old Faithful » est un geyser en cône du parc de Yellowstone aux États-Unis

    On a mesuré : - duration : la durée de l’éruption - waiting : l’intervalle de temps depuis la dernière éruption - kind : une étiquette 'short' ou 'long' du type d’éruption

    "iris.csv"

    Dataset pour classifier les espèces d'Iris

    https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQM3aH4Q3AplfE1MR3ROAp9Ok35fafmNT59ddXkdEvNdMkT8X6E">

    On a les informations suivantes : - sepal_length : longueur du sépale (en cm) - sepal_width : largeur du sépale - length,petal : longueur du pétale - petal_width : largeur du pétale - species : 3 espèces d'iris : 'setosa', 'versicolor' ou 'virginica'

    Source : UCI (http://archive.ics.uci.edu/)

    "iris_basic.csv"

    Une version simplifiée du dataset des iris, avec seulement les mesures de pétales et 2 espèces : versicolor (0) et virginica (1)

    "heart.csv"

    Prédiction de malaise cardiaque (output) en fonction de différents paramètres comme l'âge, le taux de cholesterol, ...

    Source : https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset

    "cancer.csv"

    On veut prédire si une tumeur est maline ou non, en fonction de mesures sur une biopsie de la tumeur

    Source : https://www.kaggle.com/uciml/breast-cancer-wisconsin-data

    "penguins.csv"

    Dataset comparable à celui des Iris. On veut prédire l'espèce de manchots

    • species : Adelie, Chinstrap, Gentoo
    • island : Biscoe, Dream, Torgersen
    • bill_length_mm : longueur du bec
    • bill_depth_mm : épaisseur du bec
      • flipper_length_mm : longueur de la nageoire
    • body_mass_g : poids
    • sex : “male” ou “female”

    Source : https://www.kaggle.com/ashkhagan/palmer-penguins-datasetalternative-iris-dataset

    "stars.csv"

    Classification d'étoiles

    Source : https://www.kaggle.com/datasets/deepu1109/star-dataset

    "mushrooms.csv"

    Prédire si un champignon est comestible ou non

    Source : https://www.kaggle.com/uciml/mushroom-classification

    "titanic.csv"

    Dataset très classique sur les survivants du Titanic

    Source : https://www.kaggle.com/c/titanic

    "diabetes.csv"

    Dataset "PIMA Indian diabete"

    Prédiction du diabète pour une population de femmes de la tribu Pima

    Source : https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database

    "churn-small.csv"

    On veut prédire le départ de clients pour la concurrence de clients Orange telecom (problème de ‘churn’ ou ‘attrition’)

    Version "churn-big.csv" avec plus de données

    Source : https://www.kaggle.com/datasets/mnassrib/telecom-churn-datasets

    "stroke.csv"

    Prédiction d'attaque cérébrale

    Source : https://www.kaggle.com/datasets/shashwatwork/cerebral-stroke-predictionimbalaced-dataset

    "predictive_maintenance.csv"

    Prédiction de pannes (UCI)

    Source : https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification/code

  20. deepmushroom

    • kaggle.com
    zip
    Updated Sep 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    anil sah (2020). deepmushroom [Dataset]. https://www.kaggle.com/datasets/anilkrsah/deepmushroom/code
    Explore at:
    zip(1423138085 bytes)Available download formats
    Dataset updated
    Sep 26, 2020
    Authors
    anil sah
    Description

    ● Data provided by Kaggle and Mushroom World ● Total images data taken was 9533 and are in RGB. ● Mushrooms with each common genus name contain (edible, non-edible, and poisonous types). ● Genus of mushroom can be identified based on the following attributes: ● Color and structures of cap (likes egg-shaped, expanding cap, umbrella shape, ball shape) ● Thickness, length of the stem, and habitat ● Count for the number of images taken for each class from the different sources are given below:

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Daniil Onishchenko (2023). Mushrooms images classification 215 [Dataset]. https://www.kaggle.com/datasets/daniilonishchenko/mushrooms-images-classification-215/code
Organization logo

Mushrooms images classification 215

Contains 215 classes of different mushrooms. Totally 3122 images are presented.

Explore at:
zip(1660981536 bytes)Available download formats
Dataset updated
Jun 10, 2023
Authors
Daniil Onishchenko
License

ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically

Description

Context

This dataset contains 3122 images (512x512) of 215 different mushrooms (at least 4 images per class). mushrooms.txt contains names of all the mushrooms in the dataset.

Legal notice

The dataset was created with the images, that were obtained from WildFoodUK. I'm not responsible for the use of the dataset

Inspiration

The original idea was to create an android application with mushrooms detection capabilities, but all that was done is this dataset.

Search
Clear search
Close search
Google apps
Main menu