Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
KGTorrent is a dataset of Python Jupyter notebooks from the Kaggle platform.
The dataset is accompanied by a MySQL database containing metadata about the notebooks and the activity of Kaggle users on the platform. The information to build the MySQL database has been derived from Meta Kaggle, a publicly available dataset containing Kaggle metadata.
In this package, we share the complete KGTorrent dataset (consisting of the dataset itself plus its companion database), as well as the specific version of Meta Kaggle used to build the database.
More specifically, the package comprises the following three compressed archives:
KGT_dataset.tar.bz2
, the dataset of Jupyter notebooks;
KGTorrent_dump_10-2020.sql.tar.bz2
, the dump of the MySQL companion database;
MetaKaggle27Oct2020.tar.bz2
, a copy of the Meta Kaggle version used to build the database.
Moreover, we include KGTorrent_logical_schema.pdf
, the logical schema of the KGTorrent MySQL database.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset was created by Chelsi
Released under MIT
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Images dataset divided into train (10905114 images), validation (2115528 images) and test (544946 images) folders containing a balanced number of images for two classes (chemical structures and non-chemical structures).
The chemical structures were generated using RanDepict to random picked compounds from the ChEMBL30 database and the COCONUT database.
The non-chemical structures were generated using Python or they were retrieved from several public datasets:
COCO dataset, MIT Places-205 dataset, Visual Genome dataset, Google Open labeled Images, MMU-OCR-21 (kaggle), HandWritten_Character (kaggle), CoronaHack -Chest X-Ray-dataset (kaggle), PANDAS Augmented Images (kaggle), Bacterial_Colony (kaggle), Ceylon Epigraphy Periods (kaggle), Chinese Calligraphy Styles by Calligraphers (kaggle), Graphs Dataset (kaggle), Function_Graphs Polynomial (kaggle), sketches (kaggle), Person Face Sketches (kaggle), Art Pictograms (kaggle), Russian handwritten letters (kaggle), Handwritten Russian Letters (kaggle), Covid-19 Misinformation Tweets Labeled Dataset (kaggle) and grapheme-imgs-224x224 (kaggle).
This data was used to build a CNN classification model using as a base model EfficienNetB0 and fine tuning it. The model is available on Github.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an enriched version of Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle. The initial corpus consists of ≈ 2.5 million snippets of ML code collected from ≈ 100 thousand Jupyter notebooks. A representative fraction of the snippets is annotated by human assessors through a user-friendly interface specially designed for that purpose.
The data is organized as a set of tables in CSV format. It includes several central entities: raw code blocks collected from Kaggle (code_blocks.csv), kernels (kernels_meta.csv) and competitions meta information (competitions_meta.csv). Manually annotated code blocks are presented as a separate table (murkup_data.csv). As this table contains the numeric id of the code block semantic type, we also provide a mapping from the id to semantic class and subclass (vertices.csv).
Snippets information (code_blocks.csv) can be mapped with kernels meta-data via kernel_id. Kernels metadata is linked to Kaggle competitions information through comp_name. To ensure the quality of the data kernels_meta.csv includes only notebooks with an available Kaggle score.
Automatic classification of code_blocks are stored in data_with_preds.csv. The mapping of this table with code_blocks.csv can be doe through code_blocks_index column, which corresponds to code_blocks indices.
The updated Code4ML 2.0 corpus includes kernels retrieved from Code Kaggle Meta. These kernels correspond to the kaggle competitions launched since 2020. The natural descriptions of the competitions are retrieved with the aim of LLM.
kernels_meta2.csv may contain kernels without Kaggle score, but with the place in the leader board (rank).
Code4ML 2.0 dataset can be used for various purposes, including training and evaluating models for code generation, code understanding, and natural language processing tasks.
This dataset was created by Lyon
Kaggle Notebooks LLM Filtered
Model: meta-llama/Meta-Llama-3.1-70B-Instruct Sample: 12,400 Source dataset: data-agents/kaggle-notebooks Prompt:
Below is an extract from a Jupyter notebook. Evaluate whether it has a high analysis value and could help a data scientist.
The notebooks are formatted with the following tokens:
START
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The goal of this task is to train a model that can localize and classify each instance of Person and Car as accurately as possible.
from IPython.display import Markdown, display
display(Markdown("../input/Car-Person-v2-Roboflow/README.roboflow.txt"))
In this Notebook, I have processed the images with RoboFlow because in COCO formatted dataset was having different dimensions of image and Also data set was not splitted into different Format. To train a custom YOLOv7 model we need to recognize the objects in the dataset. To do so I have taken the following steps:
Image Credit - jinfagang
!git clone https://github.com/WongKinYiu/yolov7 # Downloading YOLOv7 repository and installing requirements
%cd yolov7
!pip install -qr requirements.txt
!pip install -q roboflow
!wget "https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt"
import os
import glob
import wandb
import torch
from roboflow import Roboflow
from kaggle_secrets import UserSecretsClient
from IPython.display import Image, clear_output, display # to display images
print(f"Setup complete. Using torch {torch._version_} ({torch.cuda.get_device_properties(0).name if torch.cuda.is_available() else 'CPU'})")
https://camo.githubusercontent.com/dd842f7b0be57140e68b2ab9cb007992acd131c48284eaf6b1aca758bfea358b/68747470733a2f2f692e696d6775722e636f6d2f52557469567a482e706e67">
I will be integrating W&B for visualizations and logging artifacts and comparisons of different models!
try:
user_secrets = UserSecretsClient()
wandb_api_key = user_secrets.get_secret("wandb_api")
wandb.login(key=wandb_api_key)
anonymous = None
except:
wandb.login(anonymous='must')
print('To use your W&B account,
Go to Add-ons -> Secrets and provide your W&B access token. Use the Label name as WANDB.
Get your W&B access token from here: https://wandb.ai/authorize')
wandb.init(project="YOLOvR",name=f"7. YOLOv7-Car-Person-Custom-Run-7")
https://uploads-ssl.webflow.com/5f6bc60e665f54545a1e52a5/615627e5824c9c6195abfda9_computer-vision-cycle.png" alt="">
In order to train our custom model, we need to assemble a dataset of representative images with bounding box annotations around the objects that we want to detect. And we need our dataset to be in YOLOv7 format.
In Roboflow, We can choose between two paths:
https://raw.githubusercontent.com/Owaiskhan9654/Yolo-V7-Custom-Dataset-Train-on-Kaggle/main/Roboflow.PNG" alt="">
user_secrets = UserSecretsClient()
roboflow_api_key = user_secrets.get_secret("roboflow_api")
rf = Roboflow(api_key=roboflow_api_key)
project = rf.workspace("owais-ahmad").project("custom-yolov7-on-kaggle-on-custom-dataset-rakiq")
dataset = project.version(2).download("yolov7")
Here, I am able to pass a number of arguments: - img: define input image size - batch: determine
CVEfixes is a comprehensive vulnerability dataset that is automatically collected and curated from Common Vulnerabilities and Exposures (CVE) records in the public U.S. National Vulnerability Database (NVD). The goal is to support data-driven security research based on source code and source code metrics related to fixes for CVEs in the NVD by providing detailed information at different interlinked levels of abstraction, such as the commit-, file-, and method level, as well as the repository- and CVE level.
This dataset is a preprocessed version of the CVEfixes dataset provided at the following link: https://zenodo.org/record/7029359
This dataset consists of two files: - CVEFixes.csv : The preprocessed dataset. - LICENSE.txt : The license information of this dataset.
In the CVEFixes.csv, there are three columns: - code : The source code of the data point. - language : The programming language of the source code (c, java, php, etc) - safety : Whether the code is vulnerable or safe.
This dataset was created by liuyer
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AbstractThe H1B is an employment-based visa category for temporary foreign workers in the United States. Every year, the US immigration department receives over 200,000 petitions and selects 85,000 applications through a random process and the U.S. employer must submit a petition for an H1B visa to the US immigration department. This is the most common visa status applied to international students once they complete college or higher education and begin working in a full-time position. The project provides essential information on job titles, preferred regions of settlement, foreign applicants and employers' trends for H1B visa application. According to locations, employers, job titles and salary range make up most of the H1B petitions, so different visualization utilizing tools will be used in order to analyze and interpreted in relation to the trends of the H1B visa to provide a recommendation to the applicant. This report is the base of the project for Visualization of Complex Data class at the George Washington University, some examples in this project has an analysis for the different relevant variables (Case Status, Employer Name, SOC name, Job Title, Prevailing Wage, Worksite, and Latitude and Longitude information) from Kaggle and Office of Foreign Labor Certification(OFLC) in order to see the H1B visa changes in the past several decades. Keywords: H1B visa, Data Analysis, Visualization of Complex Data, HTML, JavaScript, CSS, Tableau, D3.jsDatasetThe dataset contains 10 columns and covers a total of 3 million records spanning from 2011-2016. The relevant columns in the dataset include case status, employer name, SOC name, jobe title, full time position, prevailing wage, year, worksite, and latitude and longitude information.Link to dataset: https://www.kaggle.com/nsharan/h-1b-visaLink to dataset(FY2017): https://www.foreignlaborcert.doleta.gov/performancedata.cfmRunning the codeOpen Index.htmlData ProcessingDoing some data preprocessing to transform the raw data into an understandable format.Find and combine any other external datasets to enrich the analysis such as dataset of FY2017.To make appropriated Visualizations, variables should be Developed and compiled into visualization programs.Draw a geo map and scatter plot to compare the fastest growth in fixed value and in percentages.Extract some aspects and analyze the changes in employers’ preference as well as forecasts for the future trends.VisualizationsCombo chart: this chart shows the overall volume of receipts and approvals rate.Scatter plot: scatter plot shows the beneficiary country of birth.Geo map: this map shows All States of H1B petitions filed.Line chart: this chart shows top10 states of H1B petitions filed. Pie chart: this chart shows comparison of Education level and occupations for petitions FY2011 vs FY2017.Tree map: tree map shows overall top employers who submit the greatest number of applications.Side-by-side bar chart: this chart shows overall comparison of Data Scientist and Data Analyst.Highlight table: this table shows mean wage of a Data Scientist and Data Analyst with case status certified.Bubble chart: this chart shows top10 companies for Data Scientist and Data Analyst.Related ResearchThe H-1B Visa Debate, Explained - Harvard Business Reviewhttps://hbr.org/2017/05/the-h-1b-visa-debate-explainedForeign Labor Certification Data Centerhttps://www.foreignlaborcert.doleta.govKey facts about the U.S. H-1B visa programhttp://www.pewresearch.org/fact-tank/2017/04/27/key-facts-about-the-u-s-h-1b-visa-program/H1B visa News and Updates from The Economic Timeshttps://economictimes.indiatimes.com/topic/H1B-visa/newsH-1B visa - Wikipediahttps://en.wikipedia.org/wiki/H-1B_visaKey FindingsFrom the analysis, the government is cutting down the number of approvals for H1B on 2017.In the past decade, due to the nature of demand for high-skilled workers, visa holders have clustered in STEM fields and come mostly from countries in Asia such as China and India.Technical Jobs fill up the majority of Top 10 Jobs among foreign workers such as Computer Systems Analyst and Software Developers.The employers located in the metro areas thrive to find foreign workforce who can fill the technical position that they have in their organization.States like California, New York, Washington, New Jersey, Massachusetts, Illinois, and Texas are the prime location for foreign workers and provide many job opportunities. Top Companies such Infosys, Tata, IBM India that submit most H1B Visa Applications are companies based in India associated with software and IT services.Data Scientist position has experienced an exponential growth in terms of H1B visa applications and jobs are clustered in West region with the highest number.Visualization utilizing programsHTML, JavaScript, CSS, D3.js, Google API, Python, R, and Tableau
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is an enriched version of the Code4ML dataset, a large-scale corpus of annotated Python code snippets, competition summaries, and data descriptions sourced from Kaggle. The initial release includes approximately 2.5 million snippets of machine learning code extracted from around 100,000 Jupyter notebooks. A portion of these snippets has been manually annotated by human assessors through a custom-built, user-friendly interface designed for this task.
The original dataset is organized into multiple CSV files, each containing structured data on different entities:
Table 1. code_blocks.csv structure
Column | Description |
code_blocks_index | Global index linking code blocks to markup_data.csv. |
kernel_id | Identifier for the Kaggle Jupyter notebook from which the code block was extracted. |
code_block_id |
Position of the code block within the notebook. |
code_block |
The actual machine learning code snippet. |
Table 2. kernels_meta.csv structure
Column | Description |
kernel_id | Identifier for the Kaggle Jupyter notebook. |
kaggle_score | Performance metric of the notebook. |
kaggle_comments | Number of comments on the notebook. |
kaggle_upvotes | Number of upvotes the notebook received. |
kernel_link | URL to the notebook. |
comp_name | Name of the associated Kaggle competition. |
Table 3. competitions_meta.csv structure
Column | Description |
comp_name | Name of the Kaggle competition. |
description | Overview of the competition task. |
data_type | Type of data used in the competition. |
comp_type | Classification of the competition. |
subtitle | Short description of the task. |
EvaluationAlgorithmAbbreviation | Metric used for assessing competition submissions. |
data_sources | Links to datasets used. |
metric type | Class label for the assessment metric. |
Table 4. markup_data.csv structure
Column | Description |
code_block | Machine learning code block. |
too_long | Flag indicating whether the block spans multiple semantic types. |
marks | Confidence level of the annotation. |
graph_vertex_id | ID of the semantic type. |
The dataset allows mapping between these tables. For example:
kernel_id
column.comp_name
. To maintain quality, kernels_meta.csv includes only notebooks with available Kaggle scores.In addition, data_with_preds.csv contains automatically classified code blocks, with a mapping back to code_blocks.csvvia the code_blocks_index
column.
The updated Code4ML 2.0 corpus introduces kernels extracted from Meta Kaggle Code. These kernels correspond to the kaggle competitions launched since 2020. The natural descriptions of the competitions are retrieved with the aim of LLM.
Notebooks in kernels_meta2.csv may not have a Kaggle score but include a leaderboard ranking (rank
), providing additional context for evaluation.
The Code4ML 2.0 corpus is a versatile resource, enabling training and evaluation of models in areas such as:
This dataset was created by Vinay Shaw
This dataset was created by Nisarg Patel
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘PGA Tour Data ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jmpark746/pga-tour-data-2010-2018 on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Having grown up watching golf, I have always been interested in exploring what sets the best golfers (golfers with wins) apart from the rest. Therefore, I decided to explore their statistics. To collect all the data, I scraped the data from the PGA Tour website using python libraries such as beautifulsoup. (The code for the data collection is included in the repository)
Data was collected from https://www.pgatour.com/stats.html.
Inspired by https://github.com/daronprater and https://www.kaggle.com/bradklassen/pga-tour-20102018-data
--- Original source retains full ownership of the source dataset ---
This dataset was created by Debdatta Chatterjee
This dataset was created by Seno Darma Aji, S.Ab
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘A Waiter's Tips’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jsphyg/tipping on 28 January 2022.
--- Dataset description provided by original source is as follows ---
One waiter recorded information about each tip he received over a period of a few months working in one restaurant. In all he recorded 244 tips.
Can you predict the tip amount?
The data was reported in a collection of case studies for business statistics.
Bryant, P. G. and Smith, M (1995) Practical Data Analysis: Case Studies in Business Statistics. Homewood, IL: Richard D. Irwin Publishing
The dataset is also available through the Python package Seaborn.
--- Original source retains full ownership of the source dataset ---
Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('fashion_mnist', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
https://storage.googleapis.com/tfds-data/visualization/fig/fashion_mnist-3.0.1.png" alt="Visualization" width="500px">
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!