Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The Grocery Store Receipts Dataset is a collection of photos captured from various grocery store receipts. This dataset is specifically designed for tasks related to Optical Character Recognition (OCR) and is useful for retail. Each image in the dataset is accompanied by bounding box annotations, indicating the precise locations of specific text segments on the receipts. The text segments are categorized into four classes: item, store, date_time and total.
This dataset was created by DoMixi1989
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This dataset was created by Premshah
Released under CC BY-SA 4.0
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by chakir hicham
Released under Apache 2.0
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Card for Invoices (Sparrow)
This dataset contains 500 invoice documents annotated and processed to be ready for Donut ML model fine-tuning. Annotation and data preparation task was done by Katana ML team. Sparrow - open-source data extraction solution by Katana ML. Original dataset info: Kozłowski, Marek; Weichbroth, Paweł (2021), “Samples of electronic invoices”, Mendeley Data, V2, doi: 10.17632/tnj49gpmtz.2
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
This dataset was created by Eduard Balamatiuc
Released under Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
This dataset was created by ChenWenSheng
Use different algorithms in order to find the best receipt based on ingredients.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
DESCRIPTION This table contains data on the percent of residents aged 16 years and older mode of transportation to work for ...
SUMMARY This table contains data on the percent of residents aged 16 years and older mode of transportation to work for California, its regions, counties, cities/towns, and census tracts. Data is from the U.S. Census Bureau, Decennial Census and American Community Survey. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Commute trips to work represent 19% of travel miles in the United States. The predominant mode – the automobile - offers extraordinary personal mobility and independence, but it is also associated with health hazards, such as air pollution, motor vehicle crashes, pedestrian injuries and fatalities, and sedentary lifestyles. Automobile commuting has been linked to stress-related health problems. Active modes of transport – bicycling and walking alone and in combination with public transit – offer opportunities for physical activity, which is associated with lowering rates of heart disease and stroke, diabetes, colon and breast cancer, dementia and depression. Risk of injury and death in collisions are higher in urban areas with more concentrated vehicle and pedestrian activity. Bus and rail passengers have a lower risk of injury in collisions than motorcyclists, pedestrians, and bicyclists. Minority communities bear a disproportionate share of pedestrian-car fatalities; Native American male pedestrians experience four times the death rate Whites or Asian pedestrians, and African-Americans and Latinos experience twice the rate as Whites or Asians. More information about the data table and a data dictionary can be found in the About/Attachments section.
ind_id - Indicator ID
ind_definition - Definition of indicator in plain language
reportyear - Year that the indicator was reported
race_eth_code - numeric code for a race/ethnicity group
race_eth_name - Name of race/ethnic group
geotype - Type of geographic unit
geotypevalue - Value of geographic unit
geoname - Name of a geographic unit
county_name - Name of county that geotype is in
county_fips - FIPS code of the county that geotype is in
region_name - MPO-based region name; see MPO_County list tab
region_code - MPO-based region code; see MPO_County list tab
mode - Mode of transportation short name
mode_name - Mode of transportation long name
pop_total - denominator
pop_mode - numerator
percent - Percent of Residents Mode of Transportation to Work,
Population Aged 16 Years and Older
LL_95CI_percent - The lower limit of 95% confidence interval
UL_95CI_percent - The lower limit of 95% confidence interval
percent_se - Standard error of the percent mode of transportation
percent_rse - Relative standard error (se/value) expressed as a percent
CA_decile - California decile
CA_RR - Rate ratio to California rate
version - Date/time stamp of a version of data
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
The Grocery Store Receipts Dataset is a collection of photos captured from various grocery store receipts. This dataset is specifically designed for tasks related to Optical Character Recognition (OCR) and is useful for retail. Each image in the dataset is accompanied by bounding box annotations, indicating the precise locations of specific text segments on the receipts. The text segments are categorized into four classes: item, store, date_time and total.