Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lightning strikes pose a severe threat to wind turbine blades, often leading to cracks, delamination, or structural failure. Due to the difficulty of capturing real-time monitoring data during such rare events, comprehensive datasets are scarce. This dataset (MDWTBM-LS) provides a rare multimodal collection of sensor-based measurements for wind turbine blades subjected to lightning strikes.
The dataset contains real-time records of turbine blade conditions before, during, and after lightning strikes, including:
Sensors were installed at multiple sections of the blade (root, 1/3 length, 2/3 length) to capture dynamic responses. This multimodal dataset enables the development of machine learning models for fault detection, condition monitoring, and predictive maintenance of wind turbines under extreme environmental conditions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains synchronized time-series recordings of current and vibration signals collected from a fully operational residential elevator system equipped with a surface-mounted Permanent Magnet Synchronous Motor (PMSM). The data were acquired under healthy and faulty operating conditions, across various load levels and motion directions. The dataset supports research in predictive maintenance, signal analysis, and fault classification for PMSM-based elevator drives.
All data were collected non-intrusively using industrial sensors:
Hioki PW3390 power analyzer for current and THD,
Triaxial accelerometer (ISO 20816-3 compliant) for vibration.
The system is a 9-stop, 6-passenger MRL elevator, driven by a 5.1 kW, 12-pole PMSM motor.
No signal post-processing was applied; raw sensor values are preserved for reproducibility.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F28976641%2F8bd2ed22dad4307b7d3acab2f66264c3%2Flogo.png?generation=1761566519357344&alt=media" alt="">
The files S74.csv and S76.csv contain raw measurement data from WS-VT1 vibration and temperature sensors manufactured by SOMAR SA.
The sensors operate within the Machine Diagnostics System SDM-1, developed as part of the project “Hardware–software system for machine and device diagnostics based on a wireless network of monitoring sensors and methods of knowledge engineering and computational intelligence”, co-funded by the European Regional Development Fund under agreement no. POIR.01.01.01-00-0304/19-00 dated 30 December 2019.
The sensors are installed on the industrial fan motors of gas furnaces used to preheat non-ferrous metal billets prior to plastic forming.
The data structure in the file is as follows:
[Date YYYY-MM-DD] [time]; [temperature, °C]; [maximum vibration acceleration, mg]; [RMS vibration acceleration, mg]
Example: 2024-11-07 07:00:18;18.3;55;45
Pliki S74.csv i S76.csv zawierają surowe dane pomiarowe z czujników wibracji i temperatury WS-VT1 firmy SOMAR SA
Czujniki pracującą w Systemie Diagnostyki Maszyn SDM-1 rozwijanym w ramach projektu „Sprzętowo-programowy system diagnostyki maszyn i urządzeń bazujących na bezprzewodowej sieci czujników monitorujących oraz metodach inżynierii wiedzy i inteligencji obliczeniowej” współfinansowanego z Europejskiego Funduszu Rozwoju Regionalnego zgodnie z umową nr POIR.01.01.01-00-0304/19-00 z dnia 30.12.2019.
Czujniki zainstalowane na silnikach przemysłowych wentylatorów pieców gazowych służących do podgrzewania kęsów metali nieżelaznych przed obróbką plastyczną.
Struktura danych w pliku jest następująca:
[Data RRRR-MM-DD] [czas];[temperatura, C];[max. przyspieszenie drgań, mg];[wart. Skuteczna przyspieszenia drgań, mg]
Przykładowo: 2024-11-07 07:00:18;18.3;55;45
SOMAR SPÓŁKA AKCYJNA
ul. Karoliny 4,
40-186 Katowice, Polska
KRS: 0000407623
NIP: 6340196270
REGON: 003601740
System Diagnostyki Maszyn SDM-1 był rozwijany w ramach projektu „Sprzętowo-programowy system diagnostyki maszyn i urządzeń bazujących na bezprzewodowej sieci czujników monitorujących oraz metodach inżynierii wiedzy i inteligencji obliczeniowej” współfinansowanego z Europejskiego Funduszu Rozwoju Regionalnego zgodnie z umową nr POIR.01.01.01-00-0304/19-00 z dnia 30.12.2019.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F28976641%2F2e5d839202a7cbfb4bb9640694fd32a7%2FNCBR.png?generation=1763105574206842&alt=media" alt="">
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lightning strikes pose a severe threat to wind turbine blades, often leading to cracks, delamination, or structural failure. Due to the difficulty of capturing real-time monitoring data during such rare events, comprehensive datasets are scarce. This dataset (MDWTBM-LS) provides a rare multimodal collection of sensor-based measurements for wind turbine blades subjected to lightning strikes.
The dataset contains real-time records of turbine blade conditions before, during, and after lightning strikes, including:
Sensors were installed at multiple sections of the blade (root, 1/3 length, 2/3 length) to capture dynamic responses. This multimodal dataset enables the development of machine learning models for fault detection, condition monitoring, and predictive maintenance of wind turbines under extreme environmental conditions.