3 datasets found
  1. Wind Turbine Monitoring During Lightning Strikes

    • kaggle.com
    zip
    Updated Sep 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikita Manaenkov (2025). Wind Turbine Monitoring During Lightning Strikes [Dataset]. https://www.kaggle.com/datasets/nikitamanaenkov/wind-turbine-monitoring-during-lightning-strikes
    Explore at:
    zip(6028695 bytes)Available download formats
    Dataset updated
    Sep 18, 2025
    Authors
    Nikita Manaenkov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Intro

    Lightning strikes pose a severe threat to wind turbine blades, often leading to cracks, delamination, or structural failure. Due to the difficulty of capturing real-time monitoring data during such rare events, comprehensive datasets are scarce. This dataset (MDWTBM-LS) provides a rare multimodal collection of sensor-based measurements for wind turbine blades subjected to lightning strikes.

    Dataset Overview

    The dataset contains real-time records of turbine blade conditions before, during, and after lightning strikes, including:

    • Strain measurements (spanwise and chordwise directions)
    • Vibration signals from fiber optic accelerometer sensors
    • Load data from fiber optic load sensors
    • Operational parameters: wind speed, wind power, rotor speed, temperature, pitch angle (angle of variable propeller), and deployment location

    Sensors were installed at multiple sections of the blade (root, 1/3 length, 2/3 length) to capture dynamic responses. This multimodal dataset enables the development of machine learning models for fault detection, condition monitoring, and predictive maintenance of wind turbines under extreme environmental conditions.

  2. Multimodal Signal Dataset for Fault Detection in PMSM-Driven Elevators Under...

    • zenodo.org
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vasileios Vlachou; Vasileios Vlachou; THEOKLITOS KARAKATSANIS; THEOKLITOS KARAKATSANIS; Dimitrios Efstathiou; Dimitrios Efstathiou; Eftychios Vlachou; Stavros Vologiannidis; Stavros Vologiannidis; Vasiliki Balaska; Vasiliki Balaska; Antonios Gasteratos; Antonios Gasteratos; Eftychios Vlachou (2025). Multimodal Signal Dataset for Fault Detection in PMSM-Driven Elevators Under Real Operating Conditions [Dataset]. http://doi.org/10.5281/zenodo.15613954
    Explore at:
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Vasileios Vlachou; Vasileios Vlachou; THEOKLITOS KARAKATSANIS; THEOKLITOS KARAKATSANIS; Dimitrios Efstathiou; Dimitrios Efstathiou; Eftychios Vlachou; Stavros Vologiannidis; Stavros Vologiannidis; Vasiliki Balaska; Vasiliki Balaska; Antonios Gasteratos; Antonios Gasteratos; Eftychios Vlachou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains synchronized time-series recordings of current and vibration signals collected from a fully operational residential elevator system equipped with a surface-mounted Permanent Magnet Synchronous Motor (PMSM). The data were acquired under healthy and faulty operating conditions, across various load levels and motion directions. The dataset supports research in predictive maintenance, signal analysis, and fault classification for PMSM-based elevator drives.

    All data were collected non-intrusively using industrial sensors:

    Hioki PW3390 power analyzer for current and THD,

    Triaxial accelerometer (ISO 20816-3 compliant) for vibration.

    The system is a 9-stop, 6-passenger MRL elevator, driven by a 5.1 kW, 12-pole PMSM motor.

    No signal post-processing was applied; raw sensor values are preserved for reproducibility.

  3. SOMAR SA - Vibration Sensor Measurement Data

    • kaggle.com
    zip
    Updated Oct 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lukasz Duss (2025). SOMAR SA - Vibration Sensor Measurement Data [Dataset]. https://www.kaggle.com/datasets/lukaszduss/somar-sa-vibration-sensors-timeseries
    Explore at:
    zip(40670665 bytes)Available download formats
    Dataset updated
    Oct 27, 2025
    Authors
    Lukasz Duss
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F28976641%2F8bd2ed22dad4307b7d3acab2f66264c3%2Flogo.png?generation=1761566519357344&alt=media" alt="">

    --- EN ---

    The files S74.csv and S76.csv contain raw measurement data from WS-VT1 vibration and temperature sensors manufactured by SOMAR SA.

    The sensors operate within the Machine Diagnostics System SDM-1, developed as part of the project “Hardware–software system for machine and device diagnostics based on a wireless network of monitoring sensors and methods of knowledge engineering and computational intelligence”, co-funded by the European Regional Development Fund under agreement no. POIR.01.01.01-00-0304/19-00 dated 30 December 2019.

    The sensors are installed on the industrial fan motors of gas furnaces used to preheat non-ferrous metal billets prior to plastic forming.

    The data structure in the file is as follows:

    [Date YYYY-MM-DD] [time]; [temperature, °C]; [maximum vibration acceleration, mg]; [RMS vibration acceleration, mg]

    Example: 2024-11-07 07:00:18;18.3;55;45

    --- PL ---

    Pliki S74.csv i S76.csv zawierają surowe dane pomiarowe z czujników wibracji i temperatury WS-VT1 firmy SOMAR SA

    Czujniki pracującą w Systemie Diagnostyki Maszyn SDM-1 rozwijanym w ramach projektu „Sprzętowo-programowy system diagnostyki maszyn i urządzeń bazujących na bezprzewodowej sieci czujników monitorujących oraz metodach inżynierii wiedzy i inteligencji obliczeniowej” współfinansowanego z Europejskiego Funduszu Rozwoju Regionalnego zgodnie z umową nr POIR.01.01.01-00-0304/19-00 z dnia 30.12.2019.

    Czujniki zainstalowane na silnikach przemysłowych wentylatorów pieców gazowych służących do podgrzewania kęsów metali nieżelaznych przed obróbką plastyczną.

    Struktura danych w pliku jest następująca:

    [Data RRRR-MM-DD] [czas];[temperatura, C];[max. przyspieszenie drgań, mg];[wart. Skuteczna przyspieszenia drgań, mg]

    Przykładowo: 2024-11-07 07:00:18;18.3;55;45

    SOMAR SPÓŁKA AKCYJNA

    ul. Karoliny 4,

    40-186 Katowice, Polska

    KRS: 0000407623

    NIP: 6340196270

    REGON: 003601740

    www.somar.com.pl

    System Diagnostyki Maszyn SDM-1 był rozwijany w ramach projektu „Sprzętowo-programowy system diagnostyki maszyn i urządzeń bazujących na bezprzewodowej sieci czujników monitorujących oraz metodach inżynierii wiedzy i inteligencji obliczeniowej” współfinansowanego z Europejskiego Funduszu Rozwoju Regionalnego zgodnie z umową nr POIR.01.01.01-00-0304/19-00 z dnia 30.12.2019.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F28976641%2F2e5d839202a7cbfb4bb9640694fd32a7%2FNCBR.png?generation=1763105574206842&alt=media" alt="">

  4. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nikita Manaenkov (2025). Wind Turbine Monitoring During Lightning Strikes [Dataset]. https://www.kaggle.com/datasets/nikitamanaenkov/wind-turbine-monitoring-during-lightning-strikes
Organization logo

Wind Turbine Monitoring During Lightning Strikes

Strain, vibration, load, and operational data

Explore at:
zip(6028695 bytes)Available download formats
Dataset updated
Sep 18, 2025
Authors
Nikita Manaenkov
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Intro

Lightning strikes pose a severe threat to wind turbine blades, often leading to cracks, delamination, or structural failure. Due to the difficulty of capturing real-time monitoring data during such rare events, comprehensive datasets are scarce. This dataset (MDWTBM-LS) provides a rare multimodal collection of sensor-based measurements for wind turbine blades subjected to lightning strikes.

Dataset Overview

The dataset contains real-time records of turbine blade conditions before, during, and after lightning strikes, including:

  • Strain measurements (spanwise and chordwise directions)
  • Vibration signals from fiber optic accelerometer sensors
  • Load data from fiber optic load sensors
  • Operational parameters: wind speed, wind power, rotor speed, temperature, pitch angle (angle of variable propeller), and deployment location

Sensors were installed at multiple sections of the blade (root, 1/3 length, 2/3 length) to capture dynamic responses. This multimodal dataset enables the development of machine learning models for fault detection, condition monitoring, and predictive maintenance of wind turbines under extreme environmental conditions.

Search
Clear search
Close search
Google apps
Main menu