This dataset was created by K Scott Mader
GitHub Issues & Kaggle Notebooks
Description
GitHub Issues & Kaggle Notebooks is a collection of two code datasets intended for language models training, they are sourced from GitHub issues and notebooks in Kaggle platform. These datasets are a modified part of the StarCoder2 model training corpus, precisely the bigcode/StarCoder2-Extras dataset. We reformat the samples to remove StarCoder2's special tokens and use natural text to delimit comments in issues and display… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/issues-kaggle-notebooks.
This dataset was created by Alexander Chervov
This dataset was created by Soumik Rakshit
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Top 1000 Kaggle Datasets’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/notkrishna/top-1000-kaggle-datasets on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine learning practitioners. Kaggle allows users to find and publish data sets, explore and build models in a web-based data-science environment, work with other data scientists and machine learning engineers, and enter competitions to solve data science challenges.
Kaggle got its start in 2010 by offering machine learning competitions and now also offers a public data platform, a cloud-based workbench for data science, and Artificial Intelligence education. Its key personnel were Anthony Goldbloom and Jeremy Howard. Nicholas Gruen was founding chair succeeded by Max Levchin. Equity was raised in 2011 valuing the company at $25 million. On 8 March 2017, Google announced that they were acquiring Kaggle.[1][2]
Source: Kaggle
--- Original source retains full ownership of the source dataset ---
This dataset was created by Sreenanda Sai Dasari
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains audios of 264 species of birds singing that were all processed. It was processed as follows:
Stereo to Mono Resampled 16kHz High Pass Filter (1500Hz and filter order of 16) Normalized
The raw dataset was provided by the BirdCLEF 2023 challenge from Kaggle. You can access it in https://www.kaggle.com/competitions/birdclef-2023/data
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset aims to publish the files that I will use on the Kaggle challenge called Predict Future Sales
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the second version of the Google Landmarks dataset (GLDv2), which contains images annotated with labels representing human-made and natural landmarks. The dataset can be used for landmark recognition and retrieval experiments. This version of the dataset contains approximately 5 million images, split into 3 sets of images: train, index and test. The dataset was presented in our CVPR'20 paper. In this repository, we present download links for all dataset files and relevant code for metric computation. This dataset was associated to two Kaggle challenges, on landmark recognition and landmark retrieval. Results were discussed as part of a CVPR'19 workshop. In this repository, we also provide scores for the top 10 teams in the challenges, based on the latest ground-truth version. Please visit the challenge and workshop webpages for more details on the data, tasks and technical solutions from top teams.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
This version of the CivilComments Dataset provides access to the primary seven labels that were annotated by crowd workers, the toxicity and other tags are a value between 0 and 1 indicating the fraction of annotators that assigned these attributes to the comment text.
The other tags are only available for a fraction of the input examples. They are currently ignored for the main dataset; the CivilCommentsIdentities set includes those labels, but only consists of the subset of the data with them. The other attributes that were part of the original CivilComments release are included only in the raw data. See the Kaggle documentation for more details about the available features.
The comments in this dataset come from an archive of the Civil Comments platform, a commenting plugin for independent news sites. These public comments were created from 2015 - 2017 and appeared on approximately 50 English-language news sites across the world. When Civil Comments shut down in 2017, they chose to make the public comments available in a lasting open archive to enable future research. The original data, published on figshare, includes the public comment text, some associated metadata such as article IDs, publication IDs, timestamps and commenter-generated "civility" labels, but does not include user ids. Jigsaw extended this dataset by adding additional labels for toxicity, identity mentions, as well as covert offensiveness. This data set is an exact replica of the data released for the Jigsaw Unintended Bias in Toxicity Classification Kaggle challenge. This dataset is released under CC0, as is the underlying comment text.
For comments that have a parent_id also in the civil comments data, the text of the previous comment is provided as the "parent_text" feature. Note that the splits were made without regard to this information, so using previous comments may leak some information. The annotators did not have access to the parent text when making the labels.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('civil_comments', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Shoe Classication Kaggle is a dataset for classification tasks - it contains Kaggle Shoe Dataset annotations for 1,090 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
FSDKaggle2018 is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology. FSDKaggle2018 has been used for the DCASE Challenge 2018 Task 2, which was run as a Kaggle competition titled Freesound General-Purpose Audio Tagging Challenge.
Citation
If you use the FSDKaggle2018 dataset or part of it, please cite our DCASE 2018 paper:
Eduardo Fonseca, Manoj Plakal, Frederic Font, Daniel P. W. Ellis, Xavier Favory, Jordi Pons, Xavier Serra. "General-purpose Tagging of Freesound Audio with AudioSet Labels: Task Description, Dataset, and Baseline". Proceedings of the DCASE 2018 Workshop (2018)
You can also consider citing our ISMIR 2017 paper, which describes how we gathered the manual annotations included in FSDKaggle2018.
Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra, "Freesound Datasets: A Platform for the Creation of Open Audio Datasets", In Proceedings of the 18th International Society for Music Information Retrieval Conference, Suzhou, China, 2017
Contact
You are welcome to contact Eduardo Fonseca should you have any questions at eduardo.fonseca@upf.edu.
About this dataset
Freesound Dataset Kaggle 2018 (or FSDKaggle2018 for short) is an audio dataset containing 11,073 audio files annotated with 41 labels of the AudioSet Ontology [1]. FSDKaggle2018 has been used for the Task 2 of the Detection and Classification of Acoustic Scenes and Events (DCASE) Challenge 2018. Please visit the DCASE2018 Challenge Task 2 website for more information. This Task was hosted on the Kaggle platform as a competition titled Freesound General-Purpose Audio Tagging Challenge. It was organized by researchers from the Music Technology Group of Universitat Pompeu Fabra, and from Google Research’s Machine Perception Team.
The goal of this competition was to build an audio tagging system that can categorize an audio clip as belonging to one of a set of 41 diverse categories drawn from the AudioSet Ontology.
All audio samples in this dataset are gathered from Freesound [2] and are provided here as uncompressed PCM 16 bit, 44.1 kHz, mono audio files. Note that because Freesound content is collaboratively contributed, recording quality and techniques can vary widely.
The ground truth data provided in this dataset has been obtained after a data labeling process which is described below in the Data labeling process section. FSDKaggle2018 clips are unequally distributed in the following 41 categories of the AudioSet Ontology:
"Acoustic_guitar", "Applause", "Bark", "Bass_drum", "Burping_or_eructation", "Bus", "Cello", "Chime", "Clarinet", "Computer_keyboard", "Cough", "Cowbell", "Double_bass", "Drawer_open_or_close", "Electric_piano", "Fart", "Finger_snapping", "Fireworks", "Flute", "Glockenspiel", "Gong", "Gunshot_or_gunfire", "Harmonica", "Hi-hat", "Keys_jangling", "Knock", "Laughter", "Meow", "Microwave_oven", "Oboe", "Saxophone", "Scissors", "Shatter", "Snare_drum", "Squeak", "Tambourine", "Tearing", "Telephone", "Trumpet", "Violin_or_fiddle", "Writing".
Some other relevant characteristics of FSDKaggle2018:
The dataset is split into a train set and a test set.
The train set is meant to be for system development and includes ~9.5k samples unequally distributed among 41 categories. The minimum number of audio samples per category in the train set is 94, and the maximum 300. The duration of the audio samples ranges from 300ms to 30s due to the diversity of the sound categories and the preferences of Freesound users when recording sounds. The total duration of the train set is roughly 18h.
Out of the ~9.5k samples from the train set, ~3.7k have manually-verified ground truth annotations and ~5.8k have non-verified annotations. The non-verified annotations of the train set have a quality estimate of at least 65-70% in each category. Checkout the Data labeling process section below for more information about this aspect.
Non-verified annotations in the train set are properly flagged in train.csv
so that participants can opt to use this information during the development of their systems.
The test set is composed of 1.6k samples with manually-verified annotations and with a similar category distribution than that of the train set. The total duration of the test set is roughly 2h.
All audio samples in this dataset have a single label (i.e. are only annotated with one label). Checkout the Data labeling process section below for more information about this aspect. A single label should be predicted for each file in the test set.
Data labeling process
The data labeling process started from a manual mapping between Freesound tags and AudioSet Ontology categories (or labels), which was carried out by researchers at the Music Technology Group, Universitat Pompeu Fabra, Barcelona. Using this mapping, a number of Freesound audio samples were automatically annotated with labels from the AudioSet Ontology. These annotations can be understood as weak labels since they express the presence of a sound category in an audio sample.
Then, a data validation process was carried out in which a number of participants did listen to the annotated sounds and manually assessed the presence/absence of an automatically assigned sound category, according to the AudioSet category description.
Audio samples in FSDKaggle2018 are only annotated with a single ground truth label (see train.csv
). A total of 3,710 annotations included in the train set of FSDKaggle2018 are annotations that have been manually validated as present and predominant (some with inter-annotator agreement but not all of them). This means that in most cases there is no additional acoustic material other than the labeled category. In few cases there may be some additional sound events, but these additional events won't belong to any of the 41 categories of FSDKaggle2018.
The rest of the annotations have not been manually validated and therefore some of them could be inaccurate. Nonetheless, we have estimated that at least 65-70% of the non-verified annotations per category in the train set are indeed correct. It can happen that some of these non-verified audio samples present several sound sources even though only one label is provided as ground truth. These additional sources are typically out of the set of the 41 categories, but in a few cases they could be within.
More details about the data labeling process can be found in [3].
License
FSDKaggle2018 has licenses at two different levels, as explained next.
All sounds in Freesound are released under Creative Commons (CC) licenses, and each audio clip has its own license as defined by the audio clip uploader in Freesound. For attribution purposes and to facilitate attribution of these files to third parties, we include a relation of the audio clips included in FSDKaggle2018 and their corresponding license. The licenses are specified in the files train_post_competition.csv
and test_post_competition_scoring_clips.csv
.
In addition, FSDKaggle2018 as a whole is the result of a curation process and it has an additional license. FSDKaggle2018 is released under CC-BY. This license is specified in the LICENSE-DATASET
file downloaded with the FSDKaggle2018.doc
zip file.
Files
FSDKaggle2018 can be downloaded as a series of zip files with the following directory structure:
root │
└───FSDKaggle2018.audio_train/ Audio clips in the train set │
└───FSDKaggle2018.audio_test/ Audio clips in the test set │
└───FSDKaggle2018.meta/ Files for evaluation setup │ │
│ └───train_post_competition.csv Data split and ground truth for the train set │ │
│ └───test_post_competition_scoring_clips.csv Ground truth for the test set
│
└───FSDKaggle2018.doc/ │
└───README.md The dataset description file you are reading │
└───LICENSE-DATASET
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Source: [9].
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
A friendly competition to build a RAG system that can read annual reports and answer questions. https://www.timetoact-group.at/details/enterprise-rag-challenge
questions.json subset.json - metadata (mapping file names to company names, major industries, etc.)
Answers not yet uploaded
The SEN12 Flood Detection dataset provides a co-registered time series of Sentinel-1 SAR and Sentinel-2 multispectral imagery for various locations worldwide. This dataset fuels the Kaggle Challenge of the same name, where participants develop machine-learning models to automate flood detection from satellite imagery.
Co-registered Time Series: The dataset offers sequences of Sentinel-1 SAR (Synthetic Aperture Radar) and Sentinel-2 multispectral images for various locations globally.
**SAR Images: **Offer an all-weather advantage, allowing flood detection regardless of cloud cover. Multispectral Images: Provide detailed information about land cover and spectral properties, aiding in flood characterization.
Global Coverage: Encompasses diverse geographical regions including West & South-East Africa, the Middle East, and Australia. This allows training models that generalize well to different environments. Labels: While the original training and test data might be separate, most formatted versions for Kaggle will combine them with labels indicating flood or non-flood for each data point. Applications:
Machine Learning for Flood Detection: This dataset is ideal for training machine learning models to automate flood detection from satellite imagery.
**Benchmarking Flood Detection Algorithms: **Researchers can use the data to evaluate the performance of different flood detection algorithms under various conditions.
Flood Characteristic Analysis: By combining SAR and multispectral data, researchers can gain insights into the characteristics of floods in different regions. Overall, the SEN12 Flood Detection dataset is a valuable platform for researchers and practitioners to advance flood detection techniques using Earth observation data.
Note: Since Kaggle datasets are often curated and assembled from various sources, it's uncommon to have a single credited author.
This data was imported from the zindi platform in the context of competition and here is the link to the competition The objective of the competition is to develop a predictive model that determines the likelihood for a customer to churn - to stop purchasing airtime and data from Expresso.
The data describes 2.5 million Expresso clients. * Train.csv - contains information about 2 million customers. There is a column called CHURN that indicates if a client churned or did not churn. This is the target. You must estimate the likelihood that these clients churned. You will use this file to train your model. * Test.csv - is similar to train, but without the Churn column. You will use this file to test your model on. * SampleSubmission.csv - is an example of what your submission should look like. The order of the rows does not matter but the name of the user_id must be correct.
The goal of REFUGE2 challenge is to evaluate and compare automated algorithms for glaucoma detection and optic disc/cup segmentation on a standard dataset of retinal fundus images. We invite the medical image analysis community to participate by developing and testing existing and novel automated classification and segmentation methods.
REFUGE2 challenge consists of THREE Tasks: Classification of clinical Glaucoma Segmentation of Optic Disc and Cup Localization of Fovea (macular center)
This dataset was created by ehddnr301
This dataset was created by Loupar_
This dataset was created by K Scott Mader