Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This is the official website for downloading the CA sub-dataset of the LargeST benchmark dataset. There are a total of 7 files in this page. Among them, 5 files in .h5 format contain the traffic flow raw data from 2017 to 2021, 1 file in .csv format provides the metadata for sensors, and 1 file in .npy format represents the adjacency matrix constructed based on road network distances. Please refer to https://github.com/liuxu77/LargeST for more information.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
** Please Upvote if you like the dataset **
Fake news or hoax news is false or misleading information presented as news. Fake news often has the aim of damaging the reputation of a person or entity, or making money through advertising revenue.
This dataset is having Both Fake and Real news.
The columns present in the dataset are:-
1) Title -> Title of the News
2) Text -> Text or Content of the News
3) Label -> Labelling the news as Fake or Real
Traffic analytics, rankings, and competitive metrics for kaggle.com as of June 2025
Book-Crossing dataset mined by Cai-Nicolas Ziegler
Freely available for research use when acknowledged with the following reference (further details on the dataset are given in this publication):
Cai-Nicolas Ziegler, Sean M. McNee, Joseph A. Konstan, Georg Lausen; Proceedings of the 14th International World Wide Web Conference (WWW '05), May 10-14, 2005, Chiba, Japan. To appear.
Further information and the original dataset can be found at the original webpage.
Changes to the dataset:
Note:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Humans From Https Www.kaggle.com Datasets Constantinwerner Human Detection Dataset is a dataset for object detection tasks - it contains Human annotations for 548 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of online sales transactions across different product categories. Each row represents a single transaction with detailed information such as the order ID, date, category, product name, quantity sold, unit price, total price, region, and payment method.
This dataset contains information about various attributes of a set of fruits, providing insights into their characteristics. The dataset includes details such as fruit ID, size, weight, sweetness, crunchiness, juiciness, ripeness, acidity, and quality.
- A_id: Unique identifier for each fruit
- Size: Size of the fruit
- Weight: Weight of the fruit
- Sweetness: Degree of sweetness of the fruit
- Crunchiness: Texture indicating the crunchiness of the fruit
- Juiciness: Level of juiciness of the fruit
- Ripeness: Stage of ripeness of the fruit
- Acidity: Acidity level of the fruit
- Quality: Overall quality of the fruit
- Fruit Classification: Develop a classification model to categorize fruits based on their features.
- Quality Prediction: Build a model to predict the quality rating of fruits using various attributes.
The dataset was generously provided by an American agriculture company. The data has been scaled and cleaned for ease of use.
If you find this dataset useful, your support through an upvote would be greatly appreciated ❤️🙂 Thank you
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset is a synthetic version inspired by the original Credit Risk dataset on Kaggle and enriched with additional variables based on Financial Risk for Loan Approval data. SMOTENC was used to simulate new data points to enlarge the instances. The dataset is structured for both categorical and continuous features.
The dataset contains 45,000 records and 14 variables, each described below:
Column | Description | Type |
---|---|---|
person_age | Age of the person | Float |
person_gender | Gender of the person | Categorical |
person_education | Highest education level | Categorical |
person_income | Annual income | Float |
person_emp_exp | Years of employment experience | Integer |
person_home_ownership | Home ownership status (e.g., rent, own, mortgage) | Categorical |
loan_amnt | Loan amount requested | Float |
loan_intent | Purpose of the loan | Categorical |
loan_int_rate | Loan interest rate | Float |
loan_percent_income | Loan amount as a percentage of annual income | Float |
cb_person_cred_hist_length | Length of credit history in years | Float |
credit_score | Credit score of the person | Integer |
previous_loan_defaults_on_file | Indicator of previous loan defaults | Categorical |
loan_status (target variable) | Loan approval status: 1 = approved; 0 = rejected | Integer |
The dataset can be used for multiple purposes:
loan_status
variable (approved/not approved) for potential applicants.credit_score
variable based on individual and loan-related attributes. Mind the data issue from the original data, such as the instance > 100-year-old as age.
This dataset provides a rich basis for understanding financial risk factors and simulating predictive modeling processes for loan approval and credit scoring.
This dataset was created by a1344683084
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset contains a total of 25000 legal cases in the form of text documents. Each document has been annotated with catchphrases, citations sentences, citation catchphrases, and citation classes. Citation classes indicate the type of treatment given to the cases cited by the present case.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context
The data presented here was obtained in a Kali Machine from University of Cincinnati,Cincinnati,OHIO by carrying out packet captures for 1 hour during the evening on Oct 9th,2023 using Wireshark.This dataset consists of 394137 instances were obtained and stored in a CSV (Comma Separated Values) file.This large dataset could be used utilised for different machine learning applications for instance classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
The dataset can be used for a variety of machine learning tasks, such as network intrusion detection, traffic classification, and anomaly detection.
Content :
This network traffic dataset consists of 7 features.Each instance contains the information of source and destination IP addresses, The majority of the properties are numeric in nature, however there are also nominal and date kinds due to the Timestamp.
The network traffic flow statistics (No. Time Source Destination Protocol Length Info) were obtained using Wireshark (https://www.wireshark.org/).
Dataset Columns:
No : Number of Instance. Timestamp : Timestamp of instance of network traffic Source IP: IP address of Source Destination IP: IP address of Destination Portocol: Protocol used by the instance Length: Length of Instance Info: Information of Traffic Instance
Acknowledgements :
I would like thank University of Cincinnati for giving the infrastructure for generation of network traffic data set.
Ravikumar Gattu , Susmitha Choppadandi
Inspiration : This dataset goes beyond the majority of network traffic classification datasets, which only identify the type of application (WWW, DNS, ICMP,ARP,RARP) that an IP flow contains. Instead, it generates machine learning models that can identify specific applications (like Tiktok,Wikipedia,Instagram,Youtube,Websites,Blogs etc.) from IP flow statistics (there are currently 25 applications in total).
**Dataset License: ** CC0: Public Domain
Dataset Usages : This dataset can be used for different machine learning applications in the field of cybersecurity such as classification of Network traffic,Network performance monitoring,Network Security Management , Network Traffic Management ,network intrusion detection and anomaly detection.
ML techniques benefits from this Dataset :
This dataset is highly useful because it consists of 394137 instances of network traffic data obtained by using the 25 applications on a public,private and Enterprise networks.Also,the dataset consists of very important features that can be used for most of the applications of Machine learning in cybersecurity.Here are few of the potential machine learning applications that could be benefited from this dataset are :
Network Performance Monitoring : This large network traffic data set can be utilised for analysing the network traffic to identifying the network patterns in the network .This help in designing the network security algorithms for minimise the network probelms.
Anamoly Detection : Large network traffic dataset can be utilised training the machine learning models for finding the irregularitues in the traffic which could help identify the cyber attacks.
3.Network Intrusion Detection : This large dataset could be utilised for machine algorithms training and designing the models for detection of the traffic issues,Malicious traffic network attacks and DOS attacks as well.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cardiovascular diseases (CVDs) are the number 1 cause of death globally, taking an estimated 17.9 million lives each year, which accounts for 31% of all deaths worlwide. Heart failure is a common event caused by CVDs and this dataset contains 12 features that can be used to predict mortality by heart failure.
Most cardiovascular diseases can be prevented by addressing behavioural risk factors such as tobacco use, unhealthy diet and obesity, physical inactivity and harmful use of alcohol using population-wide strategies.
People with cardiovascular disease or who are at high cardiovascular risk (due to the presence of one or more risk factors such as hypertension, diabetes, hyperlipidaemia or already established disease) need early detection and management wherein a machine learning model can be of great help.
Thirteen (13) clinical features: - age: age of the patient (years) - anaemia: decrease of red blood cells or hemoglobin (boolean) - high blood pressure: if the patient has hypertension (boolean) - creatinine phosphokinase (CPK): level of the CPK enzyme in the blood (mcg/L) - diabetes: if the patient has diabetes (boolean) - ejection fraction: percentage of blood leaving the heart at each contraction (percentage) - platelets: platelets in the blood (kiloplatelets/mL) - sex: woman or man (binary) - serum creatinine: level of serum creatinine in the blood (mg/dL) - serum sodium: level of serum sodium in the blood (mEq/L) - smoking: if the patient smokes or not (boolean) - time: follow-up period (days) - [target] death event: if the patient deceased during the follow-up period (boolean)
More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Haha
https://www.reddit.com/wiki/apihttps://www.reddit.com/wiki/api
Recently Reddit released an enormous dataset containing all ~1.7 billion of their publicly available comments. The full dataset is an unwieldy 1+ terabyte uncompressed, so we've decided to host a small portion of the comments here for Kagglers to explore. (You don't even need to leave your browser!)
You can find all the comments from May 2015 on scripts for your natural language processing pleasure. What had redditors laughing, bickering, and NSFW-ing this spring?
Who knows? Top visualizations may just end up on Reddit.
The database has one table, May2015
, with the following fields:
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
From a young age, hopeful talents devote time, money, and training to the sport. Yet, while the next superstar is guaranteed to start off in youth or semi-professional leagues, these leagues often have the fewest resources to invest. This includes resources for the collection of event data which helps generate insights into the performance of the teams and players.
****About Dataset:**** This dataset with 460 training and test videos in 2 folders was collected by dataset of competition videos. All videos are in MP4 format.
** Please note that the number of videos in each folder is different
Version 1 --> 460 MP4 file in 2 Folder + .CSV file Version 2 --> Coming Soon!
competition page: https://www.kaggle.com/competitions/dfl-bundesliga-data-shootout
wish you all the best
I have collected raw data of SQL injection attacks and benign traffic from different websites and cleaned that data. Thanks to @sajid576 and @mehjabeenshachi who have also contributed their time and effort.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides comprehensive customer data suitable for segmentation analysis. It includes anonymized demographic, transactional, and behavioral attributes, allowing for detailed exploration of customer segments. Leveraging this dataset, marketers, data scientists, and business analysts can uncover valuable insights to optimize targeted marketing strategies and enhance customer engagement. Whether you're looking to understand customer behavior or improve campaign effectiveness, this dataset offers a rich resource for actionable insights and informed decision-making.
Anonymized demographic, transactional, and behavioral data. Suitable for customer segmentation analysis. Opportunities to optimize targeted marketing strategies. Valuable insights for improving campaign effectiveness. Ideal for marketers, data scientists, and business analysts.
Segmenting customers based on demographic attributes. Analyzing purchase behavior to identify high-value customer segments. Optimizing marketing campaigns for targeted engagement. Understanding customer preferences and tailoring product offerings accordingly. Evaluating the effectiveness of marketing strategies and iterating for improvement. Explore this dataset to unlock actionable insights and drive success in your marketing initiatives!
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The dataset contains a comprehensive collection of human activity videos, spanning across 7 distinct classes. These classes include clapping, meeting and splitting, sitting, standing still, walking, walking while reading book, and walking while using the phone.
Each video clip in the dataset showcases a specific human activity and has been labeled with the corresponding class to facilitate supervised learning.
The primary inspiration behind creating this dataset is to enable machines to recognize and classify human activities accurately. With the advent of computer vision and deep learning techniques, it has become increasingly important to train machine learning models on large and diverse datasets to improve their accuracy and robustness.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The Financial Risk Assessment Dataset provides detailed information on individual financial profiles. It includes demographic, financial, and behavioral data to assess financial risk. The dataset features various columns such as income, credit score, and risk rating, with intentional imbalances and missing values to simulate real-world scenarios.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Retail_Analysis_with_Walmart/main/Wallmart1.jpg" alt="">
One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.
Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.
The dataset is taken from Kaggle.
Data folder consist of 'train' and 'test' subfolders containing 2 categories of data 'infected' and 'notinfected' infected : Images of ovaries having PCOS notinfected : Images of healthy ovaries
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This is the official website for downloading the CA sub-dataset of the LargeST benchmark dataset. There are a total of 7 files in this page. Among them, 5 files in .h5 format contain the traffic flow raw data from 2017 to 2021, 1 file in .csv format provides the metadata for sensors, and 1 file in .npy format represents the adjacency matrix constructed based on road network distances. Please refer to https://github.com/liuxu77/LargeST for more information.