This data is used in the North Kent Study Area Data Summary Web App, which displays environmental sampling data that has been collected as part of Wolverine World Wide’s and EGLE’s per-and poly fluoroalkyl (PFAS) assessment activities in the North Kent Study Area. This data is used in the North Kent Study Area Data Summary Web App (Item Details). You can find more information about the North Kent Study Area by visiting the House Street Disposal Area webpage or the Rockford Tannery webpage on the Michigan PFAS Action Response Team (MPART) website. For questions about this content, reach out to Leah Gies, GiesL1@Michigan.gov. This data was provided to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) by the consulting firm AECOM.
This feature class was developed primarily in support of the County's parcel mapping needs which include assessment functions and spatial analysis. The information was compiled from a number of sources including recorded deeds, filed maps, surveys and other public records and data. Users of this data should consult the information sources listed above for verification of the information.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data. The primary risk classifications used are the 1-percent-annual-chance flood event, the 0.2-percent-annual- chance flood event, and areas of minimal flood risk. The DFIRM Database is derived from Flood Insurance Studies (FISs), previously published Flood Insurance Rate Maps (FIRMs), flood hazard analyses performed in support of the FISs and FIRMs, and new mapping data, where available. The FISs and FIRMs are published by the Federal Emergency Management Agency (FEMA). The file is georeferenced to earth's surface using the Delaware (FIPS 0700) State Plane projection and coordinate system. The specifications for the horizontal control of DFIRM data files are consistent with those required for mapping at a scale of 1:12,000. Coastal study data as defined in FEMA Gudelines and Specifications, Appendix D: Guidance for Coastal Flooding Analyses and Mapping, submitted as a result of a coastal study. Appendix D notes that a variety of analytical methodologies may be used to establish Base (1-percent-annual-chance) Flood Elevations (BFEs) and floodplains throughout coastal areas of the United States. Appendix D itemizes references for the methodologies currently in use by FEMA for specific coastal flood hazards, provides general guidance for documentation of a coastal flood hazard analysis, specifies flood hazard analysis procedures for the Great Lakes coasts, and outlines intermediate data submissions for coastal flood hazard analyses with new storm surge modeling and revised stillwater flood level (SWFL). (Source: FEMA Guidelines and Specs, Appendix D Guidance for Coastal Flooding Analyses and Mapping, Section D.1)
description: Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE dataset current as of 2011. Kent County Digital Flood Insurance Rate Map Database (DFIRM); DFIRM_Kent10; he Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data..; abstract: Flood Insurance Rate Maps and Base Flood Elevations, FIRM, DFIRM, BFE dataset current as of 2011. Kent County Digital Flood Insurance Rate Map Database (DFIRM); DFIRM_Kent10; he Digital Flood Insurance Rate Map (DFIRM) Database depicts flood risk information and supporting data used to develop the risk data..
This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was prepared by digitizing maps, by compiling information onto a planimetric correct base and digitizing, or by revising digitized maps using remotely sensed and other information. This data set consists of georeferenced digital map data and computerized attribute data. The map data are in a soil survey area extent format and include a detailed, field verified inventory of soils and miscellaneous areas that normally occur in a repeatable pattern on the landscape and that can be cartographically shown at the scale mapped. A special soil features layer (point and line features) is optional. This layer displays the location of features too small to delineate at the mapping scale, but they are large enough and contrasting enough to significantly influence use and management. The soil map units are linked to attributes in the National Soil Information System relational database, which gives the proportionate extent of the component soils and their properties.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
MD/PA Sandy Supplemental Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00397 Woolpert Order No. 74333 CONTRACTOR: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 1,845 square miles. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. Coastal tiles 18SVH065720 and 8SVH095690 contain no lidar points as they exist completely in water. A DEM IMG was generated for these two tiles as the digitized hydro breakline assumed the data extent in the area. As such only 2568 LAS and Intensity files will be delivered along with 2570 DEM IMG's.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Kent/MD_kent_hillshade_m/ImageServer
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
See full Data Guide here. This layer includes polygon features that depict protected open space for towns of the Protected Open Space Mapping (POSM) project, which is administered by the Connecticut Department of Energy and Environmental Protection, Land Acquisition and Management. Only parcels that meet the criteria of protected open space as defined in the POSM project are in this layer. Protected open space is defined as: (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non-facility-based outdoor recreation, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities. Includes protected open space data for the towns of Andover, Ansonia, Ashford, Avon, Beacon Falls, Canaan, Clinton, Berlin, Bethany, Bethel, Bethlehem, Bloomfield, Bridgewater, Bolton, Brookfield, Brooklyn, Canterbury, Canton, Chaplin, Cheshire, Colchester, Colebrook, Columbia, Cornwall, Coventry, Cromwell, Danbury, Derby, East Granby, East Haddam, East Hampton, East Hartford, East Windsor, Eastford, Ellington, Enfield, Essex, Farmington, Franklin, Glastonbury, Goshen, Granby, Griswold, Groton, Guilford, Haddam, Hampton, Hartford, Hebron, Kent, Killingworth, Lebanon, Ledyard, Lisbon, Litchfield, Madison, Manchester, Mansfield, Marlborough, Meriden, Middlebury, Middlefield, Middletown, Monroe, Montville, Morris, New Britain, New Canaan, New Fairfield, New Milford, New Hartford, Newington, Newtown, Norfolk, North, Norwich, Preston, Ridgefield, Shelton, Stonington, Oxford, Plainfield, Plainville, Pomfret, Portland, Prospect, Putnam, Redding, Rocky Hill, Roxbury, Salem, Salisbury, Scotland, Seymour, Sharon, Sherman, Simsbury, Somers, South Windsor, Southbury, Southington, Sprague, Sterling, Suffield, Thomaston, Thompson, Tolland, Torrington, Union, Vernon, Wallingford, Windham, Warren, Washington, Waterbury, Watertown, West Hartford, Westbrook, Weston, Wethersfield, Willington, Wilton, Windsor, Windsor Locks, Wolcott, Woodbridge, Woodbury, and Woodstock. Additional towns are added to this list as they are completed. The layer is based on information from various sources collected and compiled during the period from March 2005 through the present. These sources include but are not limited to municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions as of the date of research at each city or town hall. The Protected Open Space layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town Assessor's lot numbering system, and system-defined (automatically generated) fields. The Protected Open Space layer has an accompanying table containing more detailed information about each feature (parcel). This table is called Protected Open Space Dat, and can be joined to Protected Open Space in ArcMap using the parcel ID (PAR_ID) field. Detailed information in the Protected Open Space Data attribute table includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the unique parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, and acreage. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygons that represent the best available locational information, and are "best fit" to the land base available for each.
The Connecticut Department of Environmental Protection's (CTDEP) Permanently Protected Open Space Phase Mapping Project Phase 1 (Protected Open Space Phase1) layer includes permanently protected open space parcels in towns in Phase 1 that meet the CTDEP's definition for this project, the Permanently Protected Open Space Mapping (CT POSM) Project. The CTDEP defines permanently protected open space as (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non facility-based outdoor recreations, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities.
Towns in Phase 1 of the CT POSM project are situated along the CT coast and portions of the Thames River and are the following: Branford, Bridgeport, Chester, Clinton, Darien, Deep River, East Haven, East Lyme, Essex, Fairfield, Greenwich, Groton, Guilford, Hamden, Ledyard, Lyme, Madison, Milford, Montville, New Haven, New London, North Branford, North Haven, Norwalk, Norwich, Old Lyme, Old Saybrook, Orange, Preston, Shelton, Stamford, Stonington, Stratford, Waterford, West Haven, Westbrook, Westport.
For the purposes of the project a number of categories or classifications of open space have also been created. These include: Land Trust, Land Trust with buidlings, Private, Private with buildings, Utility Company, Utility Company with buildings, Federal, State, Municipal, Municipal with buildings, Conservation easement, and non-DEP State land. The layer is based on information from various sources collected and compiled during the period from August 2002 trhough October 2003. These sources include municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions on the date of research at each city or town hall.
The Protected Open Space Phase1 layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town's Assessor lot numbering system, and system-defined (automatically generated) fields. In addition, the Protected_Open_Space_Phase1 layer has an accompanying table containing more detailed information about each parcel's collection, standardization and storage. This table is called Protected Open Space Phase1 Data and can be joined to Protected Open Space Phase1 in ArcMap using the parcel ID (PAR_ID) field. Detailed information includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the project-specific parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, acreage collected during site reconaissance and the data source. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygon feature type that represent the best available locational information, i.e. "best fit" to the land base available for each.
Phase 1 of the Protected Open Space Mapping (POSM) Project was accomplished by a contractor using only a querying process to identify open space. The contractor obtained assessor's data from the various towns and created programs to cull open space parcels strictly by query processes. We have found many errors and omissions in the data, but at this point in the project we cannot revisit all the coastal towns. Therefore, this data is being sent with a disclaimer for accuracy. You are welcome to use it but not to publish it. Please note that we do not include any water company parcels despite them being listed as part of our criteria because we must first obtain written clarification and clearance from the U.S. Department of Homeland Security.
We have since changed our data collection method for Phase 2 of this project. DEP staff now visit each town hall and thoroughly research the land records. The project is expected to be complete by 2010.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
These data were automated to provide an accurate high-resolution historical shoreline of Kent Island, MD suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://inport.nmfs.noaa.gov/inport/item/39808
Parcel boundaries are symbolized by parcel classification in new municipal or filter areas from the February 19, 2020 Consent Decree between the State of Michigan (Plaintiff), Plainfield and Algoma Townships (Intervening Plaintiffs) and Wolverine (Defendant). Parcel boundaries originated from Kent County GIS Data Library, available at www.accesskent.com/GISLibrary.The fields used in this dataset are: Field Name Description
PPN Parcel Pin Number in number format
Address Street Address of parcel
City City of parcel
Zip_Code State and Zip Code of parcel
PNUM Parcel Pin Number in text format
Township Algoma or Plainfield
NK Used to query parcels within North Kent Study Area
GWOrdinance Used to query parcels within Groundwater Ordinance Affected Area
Symbology2 Parcel Status from February 2020 Consent Decree: Existing Municipal Area, Filter Area, Filter Area Vacant, New Municipal Area, New Municipal Area Vacant This data is used in the North Kent Disposal Area PFAS web map. You can find more information about the North Kent Study Area by visiting the House Street Disposal Area webpage or the Rockford Tannery webpage on the Michigan PFAS Action Response Team (MPART) website. For questions about this content, reach out to Leah Gies, GiesL1@Michigan.gov. This data was provided to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) by the consulting firm AECOM.
This spatial data product was developed by the Municipality of Chatham-Kent as part of our efforts to better understand the impacts of climate change.Temperature data from local weather stations were used to determine which days from 2019 - 2023 qualified as heat events. Satellite imagery showing temperature at 30m resolution was obtained for seven of the identified heat event days. The values of the seven satellite temperature layers were combined to produce one single Land Surface Temperature data product that shows which areas throughout Chatham-Kent are the most predisposed to extreme temperatures during heat events.If you would like more information on how this layer was created, please send any inquiries to: GIS-Support@chatham-kent.caLast updated: 2024-01-01
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Source: U.S. Census Bureau, PL 94-171 Redistricting data, 2000 and 2010. Note: Census numbers for the cities of Burien and Kent do not include annexations that took place after March 31, 2010. These annexations would increase Burien to 48,072, Kent to 118,565, and decrease uninc King County to 284,089.
A digital map of the thickness of the surficial unconfined aquifer, including from the land surface and unsaturated zone to the bottom of sediments of geologic units identified as part of the surficial aquifer, was produced to improve understanding of the hydrologic system in the Maryland and Delaware portions of the Delmarva Peninsula. The map is intended to be used in conjunction with other environmental coverages (such land use, wetlands, and soil characteristics) to provide a subsurface hydrogeologic component to studies of nitrate transport that have historically relied on maps of surficial features. It could also be used to study the transport of other water soluble chemicals. The map was made using the best currently available data, which was of varying scales. It was created by overlaying a high resolution land surface and bathymetry digital elevation model (DEM) on a digital representation of the base of the surficial aquifer, part of hydrogeologic framework, as defined by Andreasen and others (2013). Thickness was calculated as the difference between the top of land surface and the bottom of the surficial aquifer sediments, which include sediments from geologic formations of late-Miocene through Quaternary age. Geologic formations with predominantly sandy surficial sediments that comprise the surficial aquifer on the Delmarva Peninsula include the Parsonsburg Sand, Sinepuxent Formation (Fm.), and parts of the Omar Fm. north of Indian River Bay in Delaware, the Columbia Fm., Beaverdam Fm., and Pennsauken Fm. (Ator and others 2005; Owens and Denney, 1986; Mixon, 1985; Bachman and Wilson, 1984). Formations with mixed texture and sandy stratigraphy including the Scotts Corner Fm. and Lynch Heights Fm. in Delaware are also considered part of the surficial aquifer (Ramsey, 1997). Subcropping aquifers and confining beds underlie the surficial aquifer throughout the Peninsula and may increase or limit its thickness, respectively (Andreasen and others, 2013). Stream incision through the surficial aquifer into older fine-textured sediments is more common in the northern part of the Peninsula where confined aquifers and their confining beds subcrop beneath the surficial aquifer. The potential for nitrate transport is greatest where relatively coarse sediments of the unconfined surficial aquifer (such as sand and gravel), are present beneath uplands and streams. Where these sediments are truncated and the streambed is incised into underlying fine-textured sediments, the potential for nitrate transport is much less and typically limited to stream-bank seeps that flow across the floodplain. In parts of south-central Maryland and southern Delaware the surficial aquifer sediments are complex with surficial sandy sediments generally less than 20 ft thick (indicated as 19 ft on the map). They include the Parsonsburg Sand and some surficial sandy facies of the Omar Fm. underlain by predominantly fine-textured sediments of the Walston Silt and Omar Fm. (Denney and others, 1979; Owens and Denney, 1979). Even though the surficial aquifer is relatively thin in this area, extensive ditching of flat poorly drained farmland allows seasonal transport of nitrate from groundwater to streams when the water table is above the base of the ditches (Lindsey and others, 2003). Geologic units of the Coastal Lowlands that surround the Peninsula are relatively thin in many areas and are primarily composed of fine-grained estuarine deposits with some coarse-textured sediments, in particular remnant beach-ridge and dune deposits (Ator and others, 2005). The Kent Island Fm. (Owens and Denney, 1986), which is part of the Coastal Lowlands on the western side of the Peninsula, has predominantly fine-grained sediments and is not included in the surficial aquifer in Maryland, as defined by Bachman and Wilson (1984); the surficial aquifer is shown to have 0 ft thickness on the map in the area mapped as Kent Island Fm. Also shown on the map as 0 ft thickness are areas in the northern most portion of the peninsula in New Castle and Cecil counties where surficial aquifer sediments are not present and other areas such as stream valleys where surficial aquifer sediments are also not present. Nitrate transport through groundwater to surface water is limited in the areas with fine-grained sediments at or near the land surface that promote denitrification in groundwater (Ator and others, 2005). Where extensive tidal marshes overly the Coastal Lowlands they also limit nitrate transport to surface waters. Available sub-regional or county-scale geologic maps produced by the Delaware and Maryland State Geologic Surveys should be consulted when using this product (www.dgs.udel.edu; www.mgs.md.gov). Local-scale maps will be particularly important in understanding areas such as where the surficial aquifer is completely truncated or very thin and overlies confining beds or confined aquifers, in the Coastal Lowlands, and in south-central Maryland and Delaware. References: Andreasen, D.C., Staley, A.W., and Achmad, Grufon, 2013. Maryland Coastal Plain Aquifer Information system: Hydrogeological Framework: Maryland Department of Natural Resources Resource Assessment Service Maryland Geological Survey Open-File Report No. 12-02-20,121 p. Ator, S.W., Denver, J.M., Krantz D.E., Newell, W.L., and Martucci, S.K., 2005. A surficial hydrogeologic framework for the Mid-Atlantic Coastal Plain: U.S. Geological Survey Professional Paper 1680, 44 p., 4 plates. Bachman, L.J. and Wilson, J.M., 1984. The Columbia Aquifer of the Eastern Shore of Maryland: Maryland Geological Survey Report of Investigations No. 40, 144 p. Denney, C.S., Owens, J.P. and Sirkin, L.A., 1979. The Parsonsburg Sand in the Central Delmarva Peninsula, Maryland and Delaware: U.S. Geological Survey Professional Paper 1067-B, 16 p. Lindsey, B.D., Phillips, S.W., Donnelly, C.A., Speiran, G.K., Plummer, L.N., Böhlke, J.K., Focazio, M.J., Burton, W.C., and Busenberg, Eurybiades, 2003. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay watershed: U.S. Geological Survey Water-Resources Investigations Report 03-4035, 201 p. Mixon, R.B., 1985. Stratigraphic and geomorphic framework of the upper most Cenozoic deposits in the southern Delmarva Peninsula, Virginia and Maryland: U.S. Geological Survey Professional Paper 1067-G, 53 p. Owens, J.P. and Denney, C.S., 1979. Upper Cenozoic Deposits of the Central Delmarva Peninsula, Maryland and Delaware: U.S. Geological Survey Professional Paper 1067-A, 28 p. --------, 1986. Geologic map of Dorchester County, Maryland: Maryland Geological Survey, 1 sheet, scale 1:62,500. Ramsey, K.W., 1997. Geology of the Milford and Mispillion River Quadrangles, Delaware: Delaware Geological Survey Report of Investigations No. 55, 40 p.
Report and map on the geology of the Betterton quadrangle in Kent County, Maryland at a scale of 1 to 24000.
This layer shows the existing water mains prior to installation of new municipal water mains for the North Kent Study Area. This data is used in the North Kent Disposal Area PFAS web map.The fields found in this dataset are:Field NameDescriptionLocationLocations of water main: City of Rockford or Plainfield TownshipYou can find more information about the North Kent Study Area by visiting the House Street Disposal Area webpage or the Rockford Tannery webpage on the Michigan PFAS Action Response Team (MPART) website. For questions about this content, reach out to Leah Gies, GiesL1@Michigan.gov.This data was provided to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) by the consulting firm AECOM.
This preliminary experimental lithogeochemical map shows the distribution of rock types in the Virginia and Maryland parts of the Chesapeake Bay watershed. The map was produced digitally by classifying geologic-map units according to composition, mineralogy, and texture; rather than by age and stratigraphic relationships as shown on traditional geologic maps. This map differs from most lithologic maps in that the lithogeochemical unit classification distinguishes those rock units having key water-reactive minerals that may induce acid neutralization, or reduction, of hosted water at the weathering interface. The validity of these rock units, however, is independent of water chemistry, because the rock units are derived from geologic maps and rock descriptions. Areas of high soil carbon content, and sulfide metal deposits are also shown. Water-reactive minerals and their weathering reactions yield five lithogeochemical unit classes: 1) carbonate rock and calcareous rocks and sediments, the most acid-neutralizing; 2)carbonaceous-sulfidic rocks and sediments, oxygen-depleting and reducing; 3) quartzofeldspathic rocks and siliciclastic sediments, relatively weakly reactive with water; 4) mafic silicate rocks/sediments, oxygen consuming and high solute-load delivering; and, 5) the rarer calcareous-sulfidic (carbonaceous) rocks, neutralizing and reducing. Earlier studies in some parts of the map area have related solute loads in ground and stream waters to some aspects of bedrock lithology. More recent preliminary tests of relationships between four of the classes of mapped lithogeochemical units and ground water chemistry, in the Mid-Atlantic area using this map, have focused on and verified the nitrate-reducing and acid-neutralizing properties of some bedrock and unconsolidated aquifer rock types. Sulfide mineral deposits and their mine-tailings effects on waters are beginning to be studied by others. Additional testing of relationships among the lithogeochemical units and aspects of ground and surface water chemistry could help to refine the lithogeochemical classification, and this map. The testing could also improve the usefulness of the map for assessing aquifer reactivity and the transport properties of reactive contaminants such as acid rain, and nitrate from agricultural sources, in the Chesapeake Bay watershed.
This web map provides a detailed vector basemap for the world symbolized with a light gray, neutral background style with minimal colors, labels, and features that is designed to draw attention to your thematic content. The web map includes vector tile layers that are similar in content and style to the popular Light Gray Canvas map, which is delivered as two layers with raster fused map cache. This map includes a vector tile layer that provides unique capabilities for customization and high-resolution display. The map includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries. The layers in this map are built using the same data sources used for the Light Gray Canvas and other Esri basemaps.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.Customize this MapBecause this map includes a vector tile layer, you can customize the map to change its content and symbology. You are able to turn on and off layers, change symbols for layers, switch to alternate local language (in some areas), and refine the treatment of disputed boundaries. See the Vector Basemap group for other vector web maps. For details on how to customize this map, please refer to these articles on the ArcGIS Online Blog.
A map showing the spatial relationship between study sites and local bathymetry.
This data is used in the North Kent Study Area Data Summary Web App, which displays environmental sampling data that has been collected as part of Wolverine World Wide’s and EGLE’s per-and poly fluoroalkyl (PFAS) assessment activities in the North Kent Study Area. This data is used in the North Kent Study Area Data Summary Web App (Item Details). You can find more information about the North Kent Study Area by visiting the House Street Disposal Area webpage or the Rockford Tannery webpage on the Michigan PFAS Action Response Team (MPART) website. For questions about this content, reach out to Leah Gies, GiesL1@Michigan.gov. This data was provided to the Michigan Department of Environment, Great Lakes, and Energy (EGLE) by the consulting firm AECOM.