11 datasets found
  1. Ethnicity

    • hub.arcgis.com
    Updated Jun 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Geospatial-Intelligence Agency (2017). Ethnicity [Dataset]. https://hub.arcgis.com/maps/4d74e92eecda4526b0be804eb50aa13d
    Explore at:
    Dataset updated
    Jun 6, 2017
    Dataset authored and provided by
    National Geospatial-Intelligence Agencyhttp://www.nga.mil/
    Area covered
    Description

    Information about the ethnic affiliation(s) and characteristics of a human population. Includes, for example, information about: the ethnic groups located within a geographic region, their community social structures, their mutual associations and conflicts with other groups, their historic roles and influence, and the physical distribution of their members. Ethnic groups are human populations whose members identify with each other, usually on the basis of having a common cultural traditions and heritage (for example: as distinguished by customs, language, religious practices, or common history) or a presumed common genealogy or ancestry.

  2. Ethnic groups in Kenya 2019

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ethnic groups in Kenya 2019 [Dataset]. https://www.statista.com/statistics/1199555/share-of-ethnic-groups-in-kenya/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Kenya
    Description

    Kikuyu was the largest ethnic group in Kenya, accounting for ** percent of the country's population in 2019. Native to Central Kenya, the Kikuyu constitute a Bantu group with more than eight million people. The groups Luhya and Kalenjin followed, with respective shares of **** percent and **** percent of the population. Overall, Kenya has more than 40 ethnic groups.

  3. b

    Ethnic Groups Map

    • hosted-metadata.bgs.ac.uk
    jpg
    Updated 1974
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry of Petroleum and Mining (National Geodata Centre for Kenya) (1974). Ethnic Groups Map [Dataset]. https://hosted-metadata.bgs.ac.uk/geonetwork/srv/api/records/610dab31-9afb-4bda-b995-25378c3bf7a8
    Explore at:
    jpgAvailable download formats
    Dataset updated
    1974
    Dataset provided by
    Ministry of Petroleum and Mining (National Geodata Centre for Kenya)
    Description

    Ethnic group map illustrates the extent and distribution of the different ethnic groups within Kenya. Major towns are indicated on the map but no further topographic detail is included.

  4. d

    Replication Data for: Ethnicity and the Swing Vote in Africa's Emerging...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Horowitz, Jeremy (2023). Replication Data for: Ethnicity and the Swing Vote in Africa's Emerging Democracies: Evidence from Kenya [Dataset]. http://doi.org/10.7910/DVN/ZYCCZM
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Horowitz, Jeremy
    Area covered
    Kenya
    Description

    Who are Africa’s swing voters? This paper argues that in settings where ethnicity is politically salient, core and swing are defined by whether ethnic groups have a co-ethnic leader in the election. For groups with a co-ethnic in the race, there is typically less uncertainty about which party or candidate will best represent the group’s interests. For those without a co-ethnic in the race, uncertainty is often greater, making these voters potentially more receptive to campaign persuasion and more likely to change voting intentions during the campaign. Consistent with these expectations, panel data from Kenya’s 2013 presidential election shows that voters from groups without a co-ethnic in the race were more than two and a half times more likely to change their voting intentions during the campaign period.

  5. d

    Replication Data for: Deepening or Diminishing Ethnic Divides? The Impact of...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kramon, Eric; Hamory, Joan; Baird, Sarah; Miguel, Edward (2023). Replication Data for: Deepening or Diminishing Ethnic Divides? The Impact of Urban Migration in Kenya [Dataset]. http://doi.org/10.7910/DVN/B8TWK2
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Kramon, Eric; Hamory, Joan; Baird, Sarah; Miguel, Edward
    Area covered
    Kenya
    Description

    The impact of urban migration on ethnic politics is the subject of longstanding debate. “First generation” modernization theories predict that urban migration should reduce ethnic identification and increase trust between groups. “Second generation” modernization perspectives argue the opposite: urban migration may amplify ethnic identification and reduce trust. We test these competing expectations with a three-wave panel survey following more than 8,000 Kenyans over a 15-year period, providing novel evidence on the impact of urban migration. Using individual fixed effects regressions, we show that urban migration leads to reductions in ethnic identification: ethnicity’s importance to the individual diminishes after migrating. Yet urban migration also reduces trust between ethnic groups, and trust in people generally. Urban migrants become less attached to their ethnicity but more suspicious. The results advance the literature on urbanization and politics and have implications for the potential consequences of ongoing urbanization processes around the world.

  6. l

    Continent of Africa: High Resolution Population Density Maps

    • kenya.lsc-hubs.org
    • lschub.kalro.org
    • +2more
    Updated Feb 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Continent of Africa: High Resolution Population Density Maps [Dataset]. https://kenya.lsc-hubs.org/cat/collections/metadata:main/items/meta-population-density
    Explore at:
    Dataset updated
    Feb 5, 2024
    Area covered
    Africa
    Description

    These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe. South Sudan, Sudan, Somalia and Ethiopia are intentionally omitted from this dataset. However, a country-level dataset for Ethiopia can be found at https://data.humdata.org/dataset/ethiopia-high-resolution-population-density-maps-demographic-estimates.

  7. Distribution of the population in Kenya 2019, by religion

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Distribution of the population in Kenya 2019, by religion [Dataset]. https://www.statista.com/statistics/1199572/share-of-religious-groups-in-kenya/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Kenya
    Description

    Christianity is the main religion adopted in Kenya. As of 2019, over 85 percent of the population identified as Christians, among which 33.4 percent were Protestants, 20.6 percent Catholics, 20.4 percent Evangelicals, and seven percent from African Instituted Churches. Furthermore, nearly 11 percent of Kenyans were Muslim.

  8. c

    The Contentious Politics of the Census in Consociational Democracies,...

    • datacatalogue.cessda.eu
    • beta.ukdataservice.ac.uk
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cooley, L (2025). The Contentious Politics of the Census in Consociational Democracies, 2017-2019 [Dataset]. http://doi.org/10.5255/UKDA-SN-854779
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset provided by
    University of Birmingham
    Authors
    Cooley, L
    Time period covered
    Feb 1, 2017 - Jan 31, 2019
    Area covered
    Kenya, Bosnia and Herzegovina, Lebanon, United Kingdom
    Variables measured
    Individual, Organization
    Measurement technique
    Data was collected through use of semi-structured qualitative interviews. Respondents were identified initially through an online search for relevant people with experience of the census in each case-study country, and then through chain referral. The sample size was 50.
    Description

    The contentious politics of the census in consociational democracies research project explored the relationship between the design of political power-sharing institutions and contention and mobilisation in relation to the census in four deeply divided societies: Bosnia and Herzegovina, Kenya, Lebanon and Northern Ireland. This data collection consists of transcripts from interviews with politicians, policy-makers and civil society representatives involved in organising and campaigning in relation to censuses in the four case-study countries, plus some additional interviews with respondents who had relevant insights into censuses elsewhere.

    This project investigated the politics of the census in societies that are deeply divided along ethnic, religious or linguistic lines, addressing some of the core themes in the RCUK Cross-Council Research Programme on Global Uncertainties. In societies that are emerging from violent conflict between different ethnic, religious or linguistic groups, peace is often maintained through an agreement that these groups will share power. One of the main ways in which agreement on such power sharing is reached is through the proportional allocation of roles in government, the civil service, the military and the police to members of the groups who have been in conflict. For example, the peace agreement might specify that a certain proportion of the parliament is reserved for members of a particular minority group. In order to assess what such proportionality looks like, though, an accurate census is required. The process of conducting a census in this context can be particularly challenging, especially when group leaders know that their share of political power is partly dependent on the results. This can result in intense debates about how census questions are worded, and the conduct of the census itself may be affected by campaigns to get respondents to answer questions in particular ways, in the belief that this will influence their political representation. This aspect of the politics of the census in deeply divided societies has not been studied in significant depth by social scientists, and as a result we know little about the relationship between the design of political institutions in these societies and the likelihood of the census becoming the subject of contentious political debates. This research project addressed this lack of knowledge through examining the politics of the census in four deeply divided societies: Bosnia and Herzegovina, Northern Ireland, Kenya and Lebanon. As part of the project, I conducted interviews with key policy-makers and civil society representatives in the four case-study countries as well as at international organisations and donor agencies, and analysed a large amount of written documents relating to censuses in the four case-study countries, including media coverage, consultation papers and responses, census committee minutes and papers from official archives.

  9. i

    Afrobarometer Survey 2005-2006 - Africa

    • dev.ihsn.org
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2019). Afrobarometer Survey 2005-2006 - Africa [Dataset]. https://dev.ihsn.org/nada/catalog/study/AFR_2005_AFB-18_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    2005 - 2006
    Area covered
    Africa
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round 3 of the Afrobarometer survey, conducted from 2005-2006 in 18 African countries (Benin, Botswana, Cape Verde, Ghana, Kenya, Lesotho, Madagascar, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, Zimbabwe).

    Geographic coverage

    The Afrobarometer surveys have national coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe Ghana Mali Nigeria Tanzania Uganda Cape Verde Mozambique Senegal Kenya Benin Madagascar

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated

  10. f

    Influence of Ethnolinguistic Diversity on the Sorghum Genetic Patterns in...

    • plos.figshare.com
    • data.niaid.nih.gov
    • +2more
    tiff
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vanesse Labeyrie; Monique Deu; Adeline Barnaud; Caroline Calatayud; Marylène Buiron; Peterson Wambugu; Stéphanie Manel; Jean-Christophe Glaszmann; Christian Leclerc (2023). Influence of Ethnolinguistic Diversity on the Sorghum Genetic Patterns in Subsistence Farming Systems in Eastern Kenya [Dataset]. http://doi.org/10.1371/journal.pone.0092178
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Vanesse Labeyrie; Monique Deu; Adeline Barnaud; Caroline Calatayud; Marylène Buiron; Peterson Wambugu; Stéphanie Manel; Jean-Christophe Glaszmann; Christian Leclerc
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Eastern Province, Kenya
    Description

    Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers’ varieties and the structure of both genetic and morphological diversity highlight the effects of the social organization of communities on the diffusion of seed, practices, and variety nomenclature.

  11. i

    Afrobarometer Survey 2002-2004 - Africa

    • dev.ihsn.org
    Updated Apr 25, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Institute for Democracy in South Africa (IDASA) (2019). Afrobarometer Survey 2002-2004 - Africa [Dataset]. https://dev.ihsn.org/nada/catalog/study/AFR_2002_AFB-16_v01_M
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset provided by
    Michigan State University (MSU)
    Ghana Centre for Democratic Development (CDD-Ghana)
    Institute for Democracy in South Africa (IDASA)
    Time period covered
    2002 - 2004
    Area covered
    Africa
    Description

    Abstract

    The Afrobarometer project assesses attitudes and public opinion on democracy, markets, and civil society in several sub-Saharan African.This dataset was compiled from the studies in Round II of the Afrobarometer, conducted from 2002-2004 in 16 countries, including Botswana, Cape Verde, Ghana, Kenya, Lesotho, Malawi, Mali, Mozambique, Namibia, Nigeria, Senegal, South Africa, Tanzania, Uganda, Zambia, and Zimbabwe

    Geographic coverage

    The Afrobarometer surveys have national coverage

    Botswana Lesotho Malawi Namibia South Africa Zambia Zimbabwe Ghana Mali Nigeria Tanzania Uganda Cape Verde Mozambique Senegal Kenya

    Analysis unit

    Basic units of analysis that the study investigates include: individuals and groups

    Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    A new sample has to be drawn for each round of Afrobarometer surveys. Whereas the standard sample size for Round 3 surveys will be 1200 cases, a larger sample size will be required in societies that are extremely heterogeneous (such as South Africa and Nigeria), where the sample size will be increased to 2400. Other adaptations may be necessary within some countries to account for the varying quality of the census data or the availability of census maps.

    The sample is designed as a representative cross-section of all citizens of voting age in a given country. The goal is to give every adult citizen an equal and known chance of selection for interview. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible. A randomly selected sample of 1200 cases allows inferences to national adult populations with a margin of sampling error of no more than plus or minus 2.5 percent with a confidence level of 95 percent. If the sample size is increased to 2400, the confidence interval shrinks to plus or minus 2 percent.

    Sample Universe

    The sample universe for Afrobarometer surveys includes all citizens of voting age within the country. In other words, we exclude anyone who is not a citizen and anyone who has not attained this age (usually 18 years) on the day of the survey. Also excluded are areas determined to be either inaccessible or not relevant to the study, such as those experiencing armed conflict or natural disasters, as well as national parks and game reserves. As a matter of practice, we have also excluded people living in institutionalized settings, such as students in dormitories and persons in prisons or nursing homes.

    What to do about areas experiencing political unrest? On the one hand we want to include them because they are politically important. On the other hand, we want to avoid stretching out the fieldwork over many months while we wait for the situation to settle down. It was agreed at the 2002 Cape Town Planning Workshop that it is difficult to come up with a general rule that will fit all imaginable circumstances. We will therefore make judgments on a case-by-case basis on whether or not to proceed with fieldwork or to exclude or substitute areas of conflict. National Partners are requested to consult Core Partners on any major delays, exclusions or substitutions of this sort.

    Sample Design

    The sample design is a clustered, stratified, multi-stage, area probability sample.

    To repeat the main sampling principle, the objective of the design is to give every sample element (i.e. adult citizen) an equal and known chance of being chosen for inclusion in the sample. We strive to reach this objective by (a) strictly applying random selection methods at every stage of sampling and by (b) applying sampling with probability proportionate to population size wherever possible.

    In a series of stages, geographically defined sampling units of decreasing size are selected. To ensure that the sample is representative, the probability of selection at various stages is adjusted as follows:

    The sample is stratified by key social characteristics in the population such as sub-national area (e.g. region/province) and residential locality (urban or rural). The area stratification reduces the likelihood that distinctive ethnic or language groups are left out of the sample. And the urban/rural stratification is a means to make sure that these localities are represented in their correct proportions. Wherever possible, and always in the first stage of sampling, random sampling is conducted with probability proportionate to population size (PPPS). The purpose is to guarantee that larger (i.e., more populated) geographical units have a proportionally greater probability of being chosen into the sample. The sampling design has four stages

    A first-stage to stratify and randomly select primary sampling units;

    A second-stage to randomly select sampling start-points;

    A third stage to randomly choose households;

    A final-stage involving the random selection of individual respondents

    We shall deal with each of these stages in turn.

    STAGE ONE: Selection of Primary Sampling Units (PSUs)

    The primary sampling units (PSU's) are the smallest, well-defined geographic units for which reliable population data are available. In most countries, these will be Census Enumeration Areas (or EAs). Most national census data and maps are broken down to the EA level. In the text that follows we will use the acronyms PSU and EA interchangeably because, when census data are employed, they refer to the same unit.

    We strongly recommend that NIs use official national census data as the sampling frame for Afrobarometer surveys. Where recent or reliable census data are not available, NIs are asked to inform the relevant Core Partner before they substitute any other demographic data. Where the census is out of date, NIs should consult a demographer to obtain the best possible estimates of population growth rates. These should be applied to the outdated census data in order to make projections of population figures for the year of the survey. It is important to bear in mind that population growth rates vary by area (region) and (especially) between rural and urban localities. Therefore, any projected census data should include adjustments to take such variations into account.

    Indeed, we urge NIs to establish collegial working relationships within professionals in the national census bureau, not only to obtain the most recent census data, projections, and maps, but to gain access to sampling expertise. NIs may even commission a census statistician to draw the sample to Afrobarometer specifications, provided that provision for this service has been made in the survey budget.

    Regardless of who draws the sample, the NIs should thoroughly acquaint themselves with the strengths and weaknesses of the available census data and the availability and quality of EA maps. The country and methodology reports should cite the exact census data used, its known shortcomings, if any, and any projections made from the data. At minimum, the NI must know the size of the population and the urban/rural population divide in each region in order to specify how to distribute population and PSU's in the first stage of sampling. National investigators should obtain this written data before they attempt to stratify the sample.

    Once this data is obtained, the sample population (either 1200 or 2400) should be stratified, first by area (region/province) and then by residential locality (urban or rural). In each case, the proportion of the sample in each locality in each region should be the same as its proportion in the national population as indicated by the updated census figures.

    Having stratified the sample, it is then possible to determine how many PSU's should be selected for the country as a whole, for each region, and for each urban or rural locality.

    The total number of PSU's to be selected for the whole country is determined by calculating the maximum degree of clustering of interviews one can accept in any PSU. Because PSUs (which are usually geographically small EAs) tend to be socially homogenous we do not want to select too many people in any one place. Thus, the Afrobarometer has established a standard of no more than 8 interviews per PSU. For a sample size of 1200, the sample must therefore contain 150 PSUs/EAs (1200 divided by 8). For a sample size of 2400, there must be 300 PSUs/EAs.

    These PSUs should then be allocated proportionally to the urban and rural

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Geospatial-Intelligence Agency (2017). Ethnicity [Dataset]. https://hub.arcgis.com/maps/4d74e92eecda4526b0be804eb50aa13d
Organization logo

Ethnicity

Explore at:
Dataset updated
Jun 6, 2017
Dataset authored and provided by
National Geospatial-Intelligence Agencyhttp://www.nga.mil/
Area covered
Description

Information about the ethnic affiliation(s) and characteristics of a human population. Includes, for example, information about: the ethnic groups located within a geographic region, their community social structures, their mutual associations and conflicts with other groups, their historic roles and influence, and the physical distribution of their members. Ethnic groups are human populations whose members identify with each other, usually on the basis of having a common cultural traditions and heritage (for example: as distinguished by customs, language, religious practices, or common history) or a presumed common genealogy or ancestry.

Search
Clear search
Close search
Google apps
Main menu