Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains images categorized into sehat and tidak sehat , organized into train , test , and validation folders, each with subfolders for each class ( /sehat and /tidak sehat ). Images are in JPEG or PNG format with a recommended resolution of 240x240 pixels, suitable for the VGG16 model’s input requirements. The dataset is intended for deep learning applications, viewable with standard image viewers, and executable with Python, particularly using TensorFlow and Keras . To access and run the VGG16 model, Google Colab or Jupyter Notebook can be used for cloud. For processing, an image data generator is set up to normalize the images, while VGG16 (with pre-trained ImageNet weights) serves as the base model with added dense layers for binary classification between sehat and tidak sehat . The model can then be compiled with an optimizer (e.g., Adam) and trained on the data with appropriate evaluation on validation and test sets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository contains a Python script for classifying apple leaf diseases using a Vision Transformer (ViT) model. The dataset used is the Plant Village dataset, which contains images of apple leaves with four classes: Healthy, Apple Scab, Black Rot, and Cedar Apple Rust. The script includes data preprocessing, model training, and evaluation steps.
The goal of this project is to classify apple leaf diseases using a Vision Transformer (ViT) model. The dataset is divided into four classes: Healthy, Apple Scab, Black Rot, and Cedar Apple Rust. The script includes data preprocessing, model training, and evaluation steps.
matplotlib
, seaborn
, numpy
, pandas
, tensorflow
, and sklearn
. These libraries are used for data visualization, data manipulation, and building/training the deep learning model.walk_through_dir
function is used to explore the dataset directory structure and count the number of images in each class.Train
, Val
, and Test
directories, each containing subdirectories for the four classes.ImageDataGenerator
from Keras to apply data augmentation techniques such as rotation, horizontal flipping, and rescaling to the training data. This helps in improving the model's generalization ability.Patches
layer that extracts patches from the images. This is a crucial step in Vision Transformers, where images are divided into smaller patches that are then processed by the transformer.seaborn
to provide a clear understanding of the model's predictions.Dataset Preparation
Train
, Val
, and Test
directories, with each directory containing subdirectories for each class (Healthy, Apple Scab, Black Rot, Cedar Apple Rust).Install Required Libraries
pip install tensorflow matplotlib seaborn numpy pandas scikit-learn
Run the Script
Analyze Results
Fine-Tuning
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A spatio-temporal (ST) machine learning (ML) model for security-constrained unit commitment (SCUC) solution acceleration. The ML architecture with GNN and LSTM layers. Includes two models, one for node prediction to predict generator commitment status, and another for edge prediction, which predicts congested lines in the system. The predictions from the two models are then used to reduce the number of variables and constraints in a SCUC problem.NOTE: Codes are implemented in Python. ML model uses Keras, Tensorflow and Spektral (GNN) libraries. Optimization is implemented using Pyomo in python. A solver license (cplex/gurobi) is required for pyomo to run.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains images categorized into sehat and tidak sehat , organized into train , test , and validation folders, each with subfolders for each class ( /sehat and /tidak sehat ). Images are in JPEG or PNG format with a recommended resolution of 240x240 pixels, suitable for the VGG16 model’s input requirements. The dataset is intended for deep learning applications, viewable with standard image viewers, and executable with Python, particularly using TensorFlow and Keras . To access and run the VGG16 model, Google Colab or Jupyter Notebook can be used for cloud. For processing, an image data generator is set up to normalize the images, while VGG16 (with pre-trained ImageNet weights) serves as the base model with added dense layers for binary classification between sehat and tidak sehat . The model can then be compiled with an optimizer (e.g., Adam) and trained on the data with appropriate evaluation on validation and test sets.