6 datasets found
  1. T

    mnist

    • tensorflow.org
    • universe.roboflow.com
    • +4more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The MNIST database of handwritten digits.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">

  2. T

    fashion_mnist

    • tensorflow.org
    • opendatalab.com
    • +3more
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). fashion_mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/fashion_mnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    Fashion-MNIST is a dataset of Zalando's article images consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image, associated with a label from 10 classes.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('fashion_mnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/fashion_mnist-3.0.1.png" alt="Visualization" width="500px">

  3. PHCD - Polish Handwritten Characters Database

    • kaggle.com
    zip
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wiktor Flis (2023). PHCD - Polish Handwritten Characters Database [Dataset]. https://www.kaggle.com/datasets/westedcrean/phcd-polish-handwritten-characters-database/versions/3
    Explore at:
    zip(250262763 bytes)Available download formats
    Dataset updated
    Dec 30, 2023
    Authors
    Wiktor Flis
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F950187%2Fd8a0b40fa9a5ad45c65e703b28d4a504%2Fbackground.png?generation=1703873571061442&alt=media" alt="">

    The process for collecting this dataset was documented in paper "https://doi.org/10.12913/22998624/122567">"Development of Extensive Polish Handwritten Characters Database for Text Recognition Research" by Mikhail Tokovarov, dr Monika Kaczorowska and dr Marek Miłosz. Link to download the original dataset: https://cs.pollub.pl/phcd/. The source fileset also contains a dataset of raw images of whole sentences written in Polish.

    Context

    PHCD (Polish Handwritten Characters Database) is a collection of handwritten texts in Polish. It was created by researchers at Lublin University of Technology for the purpose of offline handwritten text recognition. The database contains more than 530 000 images of handwritten characters. Each image is a 32x32 pixel grayscale image representing one of 89 classes (10 digits, 26 lowercase latin letters, 26 uppercase latin letters, 9 lowercase polish letters, 9 uppercase polish letters and 9 special characters), with around 6 000 examples per class.

    How to use

    This notebook contains a PyTorch example of how to load the dataset from .npz files and train a CNN model. You can also use the dataset with other frameworks, such as TensorFlow, Keras, etc.

    For .npz files, use numpy.load method.

    Contents

    The dataset contains the following:

    • dataset.npz - a file with two compressed numpy arrays:
      • "signs" - with all the images, sized 32 x 32 (grayscale)
      • "labels" - with all the labels (0-88) for examples from signs
    • label_mapping.csv - a csv file with columns label and char, mapping from ids to characters from dataset
    • images - folder with original 530 000 png images, sized 32 x 32, to use with other loading techniques

    Acknowledgements

    I want to express my gratitude to the following people: Dr. Edyta Łukasik for introducing me to this dataset and to authors of this dataset - Mikhail Tokovarov, dr. Monika Kaczorowska and dr. Marek Miłosz from Lublin University of Technology in Poland.

    Inspiration

    You can use this data the same way you used MNIST, KMNIST of Fashion MNIST: refine your image classification skills, use GPU & TPU to implement CNN architectures for models to perform such multiclass classifications.

  4. T

    emnist

    • tensorflow.org
    • datasets.activeloop.ai
    Updated Jun 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). emnist [Dataset]. https://www.tensorflow.org/datasets/catalog/emnist
    Explore at:
    Dataset updated
    Jun 1, 2024
    Description

    The EMNIST dataset is a set of handwritten character digits derived from the NIST Special Database 19 and converted to a 28x28 pixel image format and dataset structure that directly matches the MNIST dataset.

    Note: Like the original EMNIST data, images provided here are inverted horizontally and rotated 90 anti-clockwise. You can use tf.transpose within ds.map to convert the images to a human-friendlier format.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('emnist', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/emnist-byclass-3.1.0.png" alt="Visualization" width="500px">

  5. torchsummary-1.5.1-wheel

    • kaggle.com
    zip
    Updated Mar 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rito Ghosh (2021). torchsummary-1.5.1-wheel [Dataset]. https://www.kaggle.com/truthr/torchsummary
    Explore at:
    zip(2494 bytes)Available download formats
    Dataset updated
    Mar 20, 2021
    Authors
    Rito Ghosh
    Description

    Starter Notebook

    ABOUT (from project's README)

    Keras style model.summary() in PyTorch

    PyPI version

    Keras has a neat API to view the visualization of the model which is very helpful while debugging your network. Here is a barebone code to try and mimic the same in PyTorch. The aim is to provide information complementary to, what is not provided by print(your_model) in PyTorch.

    Usage

    from torchsummary import summary
    summary(your_model, input_size=(channels, H, W))
    
    • Note that the input_size is required to make a forward pass through the network.

    Examples

    CNN for MNIST

    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torchsummary import summary
    
    class Net(nn.Module):
      def _init_(self):
        super(Net, self)._init_()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)
    
      def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # PyTorch v0.4.0
    model = Net().to(device)
    
    summary(model, (1, 28, 28))
    
    ----------------------------------------------------------------
        Layer (type)        Output Shape     Param #
    ================================================================
          Conv2d-1      [-1, 10, 24, 24]       260
          Conv2d-2       [-1, 20, 8, 8]      5,020
         Dropout2d-3       [-1, 20, 8, 8]        0
          Linear-4          [-1, 50]     16,050
          Linear-5          [-1, 10]       510
    ================================================================
    Total params: 21,840
    Trainable params: 21,840
    Non-trainable params: 0
    ----------------------------------------------------------------
    Input size (MB): 0.00
    Forward/backward pass size (MB): 0.06
    Params size (MB): 0.08
    Estimated Total Size (MB): 0.15
    ----------------------------------------------------------------
    

    VGG16

    import torch
    from torchvision import models
    from torchsummary import summary
    
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    vgg = models.vgg16().to(device)
    
    summary(vgg, (3, 224, 224))
    
    ----------------------------------------------------------------
        Layer (type)        Output Shape     Param #
    ================================================================
          Conv2d-1     [-1, 64, 224, 224]      1,792
           ReLU-2     [-1, 64, 224, 224]        0
          Conv2d-3     [-1, 64, 224, 224]     36,928
           ReLU-4     [-1, 64, 224, 224]        0
         MaxPool2d-5     [-1, 64, 112, 112]        0
          Conv2d-6    [-1, 128, 112, 112]     73,856
           ReLU-7    [-1, 128, 112, 112]        0
          Conv2d-8    [-1, 128, 112, 112]     147,584
           ReLU-9    [-1, 128, 112, 112]        0
        MaxPool2d-10     [-1, 128, 56, 56]        0
          Conv2d-11     [-1, 256, 56, 56]     295,168
           ReLU-12     [-1, 256, 56, 56]        0
          Conv2d-13     [-1, 256, 56, 56]     590,080
           ReLU-14     [-1, 256, 56, 56]        0
          Conv2d-15     [-1, 256, 56, 56]     590,080
           ReLU-16     [-1, 256, 56, 56]        0
        MaxPool2d-17     [-1, 256, 28, 28]        0
          Conv2d-18     [-1, 512, 28, 28]    1,180,160
           ReLU-19     [-1, 512, 28, 28]        0
          Conv2d-20     [-1, 512, 28, 28]    2,359,808
           ReLU-21     [-1, 512, 28, 28]        0
          Conv2d-22     [-1, 512, 28, 28]    2,359,808
           ReLU-23     [-1, 512, 28, 28]        0
        MaxPool2d-24     [-1, 512, 14, 14]        0
          Conv2d-25     [-1, 512, 14, 14]    2,359,808
           ReLU-26     [-1, 512, 14, 14]        0
          Conv2d-27     [-1, 512, 14, 14]    2,359,808
           ReLU...
    
  6. T

    cats_vs_dogs

    • tensorflow.org
    • universe.roboflow.com
    • +1more
    Updated Dec 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). cats_vs_dogs [Dataset]. https://www.tensorflow.org/datasets/catalog/cats_vs_dogs
    Explore at:
    Dataset updated
    Dec 19, 2023
    Description

    A large set of images of cats and dogs. There are 1738 corrupted images that are dropped.

    To use this dataset:

    import tensorflow_datasets as tfds
    
    ds = tfds.load('cats_vs_dogs', split='train')
    for ex in ds.take(4):
     print(ex)
    

    See the guide for more informations on tensorflow_datasets.

    https://storage.googleapis.com/tfds-data/visualization/fig/cats_vs_dogs-4.0.1.png" alt="Visualization" width="500px">

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). mnist [Dataset]. https://www.tensorflow.org/datasets/catalog/mnist

mnist

Explore at:
89 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 1, 2024
Description

The MNIST database of handwritten digits.

To use this dataset:

import tensorflow_datasets as tfds

ds = tfds.load('mnist', split='train')
for ex in ds.take(4):
 print(ex)

See the guide for more informations on tensorflow_datasets.

https://storage.googleapis.com/tfds-data/visualization/fig/mnist-3.0.1.png" alt="Visualization" width="500px">

Search
Clear search
Close search
Google apps
Main menu