9 datasets found
  1. s

    Data from: World Database on Protected Areas

    • fsm-data.sprep.org
    • pacificdata.org
    • +13more
    geojson, html, jpeg +3
    Updated Feb 15, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment World Conservation Monitoring Centre (UNEP-WCMC) (2022). World Database on Protected Areas [Dataset]. https://fsm-data.sprep.org/dataset/world-database-protected-areas
    Explore at:
    html, jpeg, pdf, zip, geojson, websiteAvailable download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    The Nature Conservancy
    Authors
    UN Environment World Conservation Monitoring Centre (UNEP-WCMC)
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    136.54769897461 7.3188817303668, 152.98324584961 3.995780512963, 142.61215209961 5.5722498011139, 153.42269897461 9.9255659124055, 154.38949584961 0.39550467153202, 155.88363647461 0.043945308191358, 164.23324584961 4.7844689665794, 162.91488647461 6.1842461612806, POLYGON ((136.54769897461 10.531020008465, 139.71176147461 11.135287077054)), Federated States of Micronesia
    Description

    The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas, updated on a monthly basis, and is one of the key global biodiversity data sets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management. The WDPA is a joint project between UN Environment and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UN Environment World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable. Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets. Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary. The reach of the WDPA is further enhanced in services developed by other parties, such as the Global Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.

  2. d

    Biodiversity Proximity Risk Data | Climate Risk Data | 14k+ companies | IBAT...

    • datarade.ai
    .csv, .xls
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIST (2024). Biodiversity Proximity Risk Data | Climate Risk Data | 14k+ companies | IBAT Partnership [Dataset]. https://datarade.ai/data-products/biodiversity-proximity-risk-data-nature-esg-data-14000-c-gist
    Explore at:
    .csv, .xlsAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    GIST
    Area covered
    Belarus, Korea (Republic of), Palestine, Brazil, Chad, San Marino, Djibouti, Virgin Islands (U.S.), Poland, Mayotte
    Description

    GIST Impact in partnership with the Integrated Biodiversity Assessment Tool (IBAT) offers a suite of science-based ESG data products that provide an accurate and comprehensive picture of companies’ impacts and dependencies on nature.

    The data provides valuable insights into the intricate relationship between corporate assets and biodiversity hotspots. The spreadsheet provides a holistic view of asset distribution in proximity to key biodiversity areas (KBA) and the World Database on Protected Areas (WDPA). Organizations can therefore assess nature-related risks and identify areas of opportunity using GIST Impact’s Biodiversity Proximity Analysis ESG Data.

    By defining a buffer as an influence area, we have carefully determined the assets intersecting with both KBA and WDPA boundaries. Our analysis extends beyond the mere identification of asset intersections, delving into the realm of environmental impact. We have thoroughly examined the influence areas of assets located within KBA regions, identifying the presence of IUCN Red List threatened species. This critical assessment sheds light on the potential impact of corporate activities on endangered species, emphasizing the need for proactive conservation measures.

    Biodiversity Proximity Risk Data allows organizations to: 1. Understand priority asset locations of companies close to biodiversity hotspots 2. Gain granular insights on species near assets at a very fine resolution 3. Access GIS maps overlaid with business asset locations to evaluate biodiversity hotspots, as recommended by TNFD 4. Leverage our extensive asset location database with millions of assets tagged by company, sector and type of asset

  3. a

    Zones clés de biodiversité (KBA - Key Biodiversity Areas)

    • hub.arcgis.com
    • data.gouv.nc
    Updated Oct 25, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gouvernement de la Nouvelle-Calédonie (2017). Zones clés de biodiversité (KBA - Key Biodiversity Areas) [Dataset]. https://hub.arcgis.com/maps/934b1cad2b9045d8ac2c4d7b0a524f2e
    Explore at:
    Dataset updated
    Oct 25, 2017
    Dataset authored and provided by
    Gouvernement de la Nouvelle-Calédonie
    Area covered
    Description

    Généalogie : >> Juin 2016 (date de mise à jour) : Une nouvelle version (v2) est désormais disponible. Quatre nouvelles zones ont été créées sur la partie terrestre.Deux nouvelles couches sont intégrées dans le zip de téléchargement, couvrant d'une part l'espace côtier et lagonaire et d'autre part, l'espace marin. Sur le domaine marin, les zones définies sont des « ZCB potentielles ». Elles seraient susceptibles de devenir des ZCB lorsque plus de données de localisation sur les espèces menacées présentes seront acquises. Sont considérés comme « côtières » dans cette délimitation, les zones sous juridiction des provinces (Nord, Sud et Loyauté). La limite terrestre/côtier qui a été retenue suit la délimitation de la couche géographique des limites administratives des provinces et peut inclure les zones de mangroves telles qu'elles apparaissent dans la couche d'information géographique « physiographie des mangroves ».Pour plus d'informations sur la délimitation des zones et sujets en relation, veuillez consulter le rapport pdf "Profil d'écosystèmes" présent dans les liens de Distribution de cette fiche de métadonnées.Les Zones Clés de Biodiversité (Key Biodiversity Areas) reposent sur un découpage spatial sur le domaine terrestre en "unité de planification". Ces unités de planification se basent sur les sous bassins versants résultants de l'outil de modélisation hydrologique de ArcMap 9.3.1 ; En utilisant le DEM/MNT (Modèle Numérique de Terrain) au pas de 50m de la DTSI, plusieurs étapes ont été réalisées : 1.FlowDirection ; FlowAccumulation ; Conditionnalité : avoir au moins 500 cellules produites par le débit cumulé pour générer une cellule d'un réseau hydrologique (ce qui indique qu'au moins 500 cellules de débit cumulé sont nécessaires pour définir une cellule du réseau hydrologique). Il en résulte l'identification de 10.700 unités de planification (sous bassins versants dont la taille moyenne est de 155 ha), mais cela a également révélé que les zones côtières n'étaient pas pris en compte dans ce calcul car le débit cumulé est souvent inférieur à 500 cellules); 2.Streamlink : flux lien produit ; Outil pour bassins versants : bassins versants générés en polygones ; 3. Stream Caractéristique : (encore une fois en utilisant le lien stream) générant polylignes illustrant le ruisseau ; Basé sur le shapefile Province50 DTSI, la circonférence de la Grande terre et des îles pourraient être déterminés. La zone (zones côtières principalement) issue de la différence symétrique entre la couche Province50 et celle des bassins versants produite (décrite ci-dessus) a été remplie avec des bassins : Ces bassins ont été tirés de la commande "bassin" en employant le DEM/MNT 50m. Étant donné que ces bassins peuvent devenir très réduits, surtout sur zones côtières, toutes les unités de bassins inférieurs à 3,5 ha ont été dissoutes (fusionnées quand spatialement adjacentes) et toutes les zones de moins de 0,2 hectare éliminées par fusion au polygone voisin le plus grand. Une étape suivante a été l'identification de "zones plates» dont l'inclinaison est inférieure ou égale à 0,1% pour substituer les zones où la modélisation n'était pas adaptée. La principale zone remplacée par un polygone une "zone plate" correspond au lac de Yaté. Deux autres caractéristiques des polygones ont été divisés pour produire la donnée finale en raison de l'intégration de la délimitation provinciale (Province Sud / Nord). Sur la base de ces "unités de planification" les polygones représentant les Zones Clés de Biodiversité ont été identifiés. L'identification est un processus de sélection des unités de planification basée sur l'occurrence des espèces menacées suivant la méthodologie de délimitation Zones Clés de Biodiversité par UICN (Langhammer, PF, Bakarr, MI, Bennun, LA, Brooks, TM, Clay, RP, Darwall, W., De Silva, N., Edgar, GJ, Eken, G., Fishpool, PMA, 3 Fonseca, GAB da, Foster, MN, Knox, DH, Matiku, P., Radford, EA, Rodrigues, ASL, Salaman, P., . Sechrest, W., et Tordoff, AW (2007) Identification et analyse des lacunes de zones clés pour la biodiversité : Cibles de réseaux d'aires protégées complets Gland, Suisse: UICN).Source à citer : Conservation International Nouvelle-Caledonie 2011. Delineation of New Caledonia Key Biodiversity Areas. Langhammer, P.F., et al. (2007). Identification and Gap Analysis of Key Biodiversity Areas: Targets for Comprehensive Protected Area Systems. Gland, Switzerland: IUCN.Mention obligatoire : La délimitation des Zones Clés de Biodiversité est amenée à évoluer vu que la production de données biodiversité est toujours en cours et que la méthodologie est itérative ; Sujet suivi par le Groupe Profil d'Ecosystème de Nouvelle-Calédonie regroupant la Province Sud, la Province Nord, la Province des iles, le gouvernement de la Nouvelle-Calédonie, l'État Français, AFD, CI, SCO, WWF, AICA, IRD, UNC, IAC, IFREMER.Plus d'informations :Rapport sur le Profil d'écosystèmes de la Nouvelle-Calédonie : https://sig-public.gouv.nc/BEST_Profil_d_ecosystemes_Nouvelle_Caledonie_2016.pdfTaxons par KBA : https://sig-public.gouv.nc/KBA_AllCRENEVU_species2016.xlsxInformations sur la méthode de délimitation : https://www.iucn.org/about/union/commissions/wcpa/wcpa_puball/wcpa_bpg/?376/2/Identification-and-gap-analysis-of-key-biodiversity-areas-targets-for-comprehensive-protected-area-systemsSite de "Conservation International" - Gestionnaire : https://www.conservation.org/Les antennes de CI à travers le monde : https://www.conservation.org/where/Pages/default.aspxL'antenne "Pacific Oceanscape" de CI : https://www.conservation.org/where/pages/pacific-oceanscape.aspxL'antenne Nouvelle-Calédonie de CI : https://www.conservation.org/projects/new-caledonia-home-of-the-worlds-second-largest-marine-parkTéléchargement des données : https://georep-dtsi-sgt.opendata.arcgis.com/maps/934b1cad2b9045d8ac2c4d7b0a524f2e/about

  4. a

    WDPA - World Database of Protected Areas

    • hub.arcgis.com
    • uneca.africageoportal.com
    • +7more
    Updated Nov 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2022). WDPA - World Database of Protected Areas [Dataset]. https://hub.arcgis.com/maps/a3c51b4e618a46c9b6c466150d4ffe75
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas, updated on a monthly basis, and is one of the key global biodiversity data sets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management.The WDPA is a joint project between UN Environment and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UN Environment World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable.Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets.Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary.The reach of the WDPA is further enhanced in services developed by other parties, such as the Global Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.

  5. Data for: Madagascar's rapidly declining biodiversity: Patterns, trends, and...

    • zenodo.org
    Updated Dec 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hélène Ralimanana; Allison L. Perrigo; Allison L. Perrigo; Rhian J. Smith; James S. Borrell; Angelica Crottini; Angelica Crottini; Søren Faurby; Søren Faurby; Jan Hackel; Jan Hackel; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Weston Testo; Weston Testo; Maria S. Vorontsova; Maria S. Vorontsova; Niels Andela; Niels Andela; Tobias Andermann; Tobias Andermann; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Steven P. Bachman; Steven P. Bachman; Christine D. Bacon; Christine D. Bacon; William J. Baker; William J. Baker; Francesco Belluardo; Francesco Belluardo; Stuart Cable; Nataly Allasi Canales; Juan D. Carillo; Juan D. Carillo; Rosie Clegg; Colin Clubbe; Colin Clubbe; Robert S.C. Cooke; Robert S.C. Cooke; Gabriel Damasco; Sonia Dhanda; Sonia Dhanda; Daniel Edler; Daniel Edler; Harith Farooq; Harith Farooq; Paola de L. Ferreira; Paola de L. Ferreira; Félix Forest; Félix Forest; Brian L. Fisher; Brian L. Fisher; Lauren M. Gardiner; Lauren M. Gardiner; Steven M. Goodman; Steven M. Goodman; Olwen M. Grace; Olwen M. Grace; Thaís B. Guedes; Thaís B. Guedes; Marie Henniges; Marie Henniges; Rowena Hill; Rowena Hill; Caroline E.R. Lehmann; Porter P. Lowry II; Porter P. Lowry II; Lovanomenjanahary Marline; Lovanomenjanahary Marline; Pável Matos-Maraví; Pável Matos-Maraví; Justin Moat; Justin Moat; Beatriz Neves; Beatriz Neves; Matheus G.C. Nogueira; Matheus G.C. Nogueira; Renske E. Onstein; Renske E. Onstein; Alexander S.T. Papadopulos; Oscar A. Perez; Leanne N. Phelps; Leanne N. Phelps; Peter Phillipson; Peter Phillipson; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Mijoro Rakotoarinivo; Mijoro Rakotoarinivo; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Franck Rakotonasolo; Franck Rakotonasolo; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Henintsoa Razanajatovo; Henintsoa Razanajatovo; Estelle Razanatsoa; Malin Rivers; Malin Rivers; Ferran Sayol; Ferran Sayol; Daniele Silvestro; Maria Fernanda Torres Jiménez; Kim Walker; Kim Walker; Barnaby E. Walker; Paul Wilkin; Jenny Williams; Jenny Williams; Thomas Ziegler; Thomas Ziegler; Alexandre Antonelli; Alexandre Antonelli; Hélène Ralimanana; Rhian J. Smith; James S. Borrell; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Stuart Cable; Nataly Allasi Canales; Rosie Clegg; Gabriel Damasco; Caroline E.R. Lehmann; Alexander S.T. Papadopulos; Oscar A. Perez; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Estelle Razanatsoa; Daniele Silvestro; Maria Fernanda Torres Jiménez; Barnaby E. Walker; Paul Wilkin (2022). Data for: Madagascar's rapidly declining biodiversity: Patterns, trends, and opportunities for terrestrial conservation and restoration [Dataset]. http://doi.org/10.5281/zenodo.5215758
    Explore at:
    Dataset updated
    Dec 2, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hélène Ralimanana; Allison L. Perrigo; Allison L. Perrigo; Rhian J. Smith; James S. Borrell; Angelica Crottini; Angelica Crottini; Søren Faurby; Søren Faurby; Jan Hackel; Jan Hackel; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Weston Testo; Weston Testo; Maria S. Vorontsova; Maria S. Vorontsova; Niels Andela; Niels Andela; Tobias Andermann; Tobias Andermann; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Steven P. Bachman; Steven P. Bachman; Christine D. Bacon; Christine D. Bacon; William J. Baker; William J. Baker; Francesco Belluardo; Francesco Belluardo; Stuart Cable; Nataly Allasi Canales; Juan D. Carillo; Juan D. Carillo; Rosie Clegg; Colin Clubbe; Colin Clubbe; Robert S.C. Cooke; Robert S.C. Cooke; Gabriel Damasco; Sonia Dhanda; Sonia Dhanda; Daniel Edler; Daniel Edler; Harith Farooq; Harith Farooq; Paola de L. Ferreira; Paola de L. Ferreira; Félix Forest; Félix Forest; Brian L. Fisher; Brian L. Fisher; Lauren M. Gardiner; Lauren M. Gardiner; Steven M. Goodman; Steven M. Goodman; Olwen M. Grace; Olwen M. Grace; Thaís B. Guedes; Thaís B. Guedes; Marie Henniges; Marie Henniges; Rowena Hill; Rowena Hill; Caroline E.R. Lehmann; Porter P. Lowry II; Porter P. Lowry II; Lovanomenjanahary Marline; Lovanomenjanahary Marline; Pável Matos-Maraví; Pável Matos-Maraví; Justin Moat; Justin Moat; Beatriz Neves; Beatriz Neves; Matheus G.C. Nogueira; Matheus G.C. Nogueira; Renske E. Onstein; Renske E. Onstein; Alexander S.T. Papadopulos; Oscar A. Perez; Leanne N. Phelps; Leanne N. Phelps; Peter Phillipson; Peter Phillipson; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Mijoro Rakotoarinivo; Mijoro Rakotoarinivo; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Franck Rakotonasolo; Franck Rakotonasolo; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Henintsoa Razanajatovo; Henintsoa Razanajatovo; Estelle Razanatsoa; Malin Rivers; Malin Rivers; Ferran Sayol; Ferran Sayol; Daniele Silvestro; Maria Fernanda Torres Jiménez; Kim Walker; Kim Walker; Barnaby E. Walker; Paul Wilkin; Jenny Williams; Jenny Williams; Thomas Ziegler; Thomas Ziegler; Alexandre Antonelli; Alexandre Antonelli; Hélène Ralimanana; Rhian J. Smith; James S. Borrell; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Stuart Cable; Nataly Allasi Canales; Rosie Clegg; Gabriel Damasco; Caroline E.R. Lehmann; Alexander S.T. Papadopulos; Oscar A. Perez; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Estelle Razanatsoa; Daniele Silvestro; Maria Fernanda Torres Jiménez; Barnaby E. Walker; Paul Wilkin
    Area covered
    Madagascar
    Description

    CatalogueOfPlantsOfMadagascar.csv -- Comma-separated table with comprehensive taxonomic database of plants of Madagascar, from the “Catalogue of the Plants of Madagascar” project. Contact: Peter Phillipson - peter.phillipson@mobot.org and Marina Rabarimanarivo - marina.rabarimanarivo@mobot.mg


    Ex_situ_plants.xlsx -- Excel spreadsheet with numbers of ex situ conserved plant species, per family, from BGCI’s PlantSearch database and collections of Jardin Botanique Educatif and Parc Ivoloina. Contact: Malin Rivers - malin.rivers@bgci.org


    Ex_situ_vertebrates.xlsx -- Excel spreadsheet with the list of extant native Malagasy vertebrates with information on their presence in at least one international zoo holding and whether they have been bred successfully over the last 12 months. Data from the Zoological Information Management (ZIM) Software performed in February 2021. Contact: Angelica Crottini - tiliquait@yahoo.it


    Extinct_Animals_madagascar.csv -- Comma-separated table of all known anthropogenic extinctions before 1500 CE in Madagascar. Contact: Ferran Sayol - fsayol@gmail.com


    features_predict210325_predictions.txt -- Tab-separated table with results of the conservation status prediction from a Bayesian Neural Network for 5,887 species of vascular plants from Madagascar. Values are the mean posterior probabilities for each IUCN Red List category. Contact: Daniele Silvestro - daniele.silvestro@unifr.ch


    Fossils_Madagascar.csv -- Comma-separated table with Malagasy fossil records, downloaded from the PaleoBiology Database. Contact: Juan Carillo - juan.carrillo@mnhn.fr


    Fungi_supplementary_material.zip -- Zipped archive containing: R script to get fungal endemism estimates from GBIF/UNITE and process data; comma-separated tables from GBIF, PlutoF, Goodman lichen checklist and Index Fungorum (as of 02/12/20): comma-separated table listing Madagascan taxa with endemism status. Contact: Rowena Hill - r.hill @kew.org


    Genera_records_world.csv -- Comma-separated table with worldwide fossil records for Malagasy species, downloaded from the PaleoBiology Database. -- Juan Carillo - juan.carrillo@mnhn.fr


    lineage_data_clean_v4.csv -- Comma-separated table with crown and stem ages, number of species, and geographic origin or distribution of sister clade of Malagasy endemic lineages, extracted from the literature. Contact: Jan Hackel - j.hackel@kew.org and Angelica Crottini - tiliquait@yahoo.it


    Madagascar Protected Areas - Sources.csv -- Comma-separated table with comments and sources for columns in the protected area data in the csv and shapefile. Contact: Maria S. Vorontsova - m.vorontsova@kew.org


    Madagascar_terrestrial_protected_areas.csv -- Comma-separated values matching the data within the Protected Area Shapefile except the shapes. Contact: Daniel Edler - daniel.edler@umu.se and Henintsoa Razanajatovo - H.Razanajatovo@kew.org


    Madagascar_terrestrial_protected_areas.zip -- ESRI Shapefile for the synthesized protected areas of Madagascar, including Key Biodiversity Areas and attributes. Contact: Daniel Edler - daniel.edler@umu.se and Rasolohery Andriambolantsoa - arasolohery@ileiry.com


    moatsmith_1km_extended.zip -- Raster geotiff with new expanded vegetation types based on Moat & Smith (2007). Contact: Justin Moat - j.moat@kew.org


    Observed_and_predicted_threats.csv -- Comma-separated table with the number of species with each listed threat, as defined by the IUCN or predicted by our model, across taxonomic groups. Contact: Rob Cooke - 03rcooke@gmail.com


    PhylogeneticDiversityMethods.zip -- Zipped archive containing community matrices, species range shapefiles, and R script used to estimate phylogenetic diversity for amphibians, mammals, and reptiles. Contact: Weston Testo - westontesto@gmail.com

    predicting_species_IUCN_status.zip -- Zipped archive containing data, scripts and an Rstudio project to: (1) prepare features for using IUCNN v1.0 to predict the conservation status for Not Evaluated species (01_feature_preparation); (2) predict species IUCN status assessment using neural networks (02_predicting_species_IUCN_status); (3) predict species’ threat status using neural networks (03_predicting_species_threats). Contact: Alexander Zizka - alexander.zizka@idiv.de and Daniele Silvestro - daniele.silvestro@unifr.ch


    SpeciesRichnessModelingOccurrences.csv -- Comma-separated table with specimen-based occurrence data for Malagasy amphibians, grasses, lemurs, palms, reptiles, and Sarcolaenaceae. Contact: Weston Testo - westontesto@gmail.com


    TaxonDescriptionByYear.csv -- Comma-separated table with years of basionym publication for Malagasy amphibians, reptiles, vascular plants, and ants. Contact: Weston Testo - westontesto@gmail.com


    VertebrateSpeciesList.csv -- Comma-separated table with species list of amphibians, birds, mammals, and reptiles of Madagascar (curated list based on IUCN data). Contact: Weston Testo - westontesto@gmail.com

  6. Madagascar's extraordinary biodiversity: a data repository

    • zenodo.org
    • explore.openaire.eu
    csv, txt, zip
    Updated Dec 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hélène Ralimanana; Allison L. Perrigo; Allison L. Perrigo; Rhian J. Smith; Rhian J. Smith; James S. Borrell; Angelica Crottini; Angelica Crottini; Søren Faurby; Søren Faurby; Jan Hackel; Jan Hackel; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Weston Testo; Weston Testo; Maria S. Vorontsova; Maria S. Vorontsova; Niels Andela; Niels Andela; Tobias Andermann; Tobias Andermann; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Steven P. Bachman; Steven P. Bachman; Christine D. Bacon; Christine D. Bacon; William J. Baker; William J. Baker; Francesco Belluardo; Francesco Belluardo; Stuart Cable; Nataly Allasi Canales; Juan D. Carillo; Juan D. Carillo; Rosie Clegg; Colin Clubbe; Colin Clubbe; Robert S.C. Cooke; Robert S.C. Cooke; Gabriel Damasco; Sonia Dhanda; Sonia Dhanda; Daniel Edler; Daniel Edler; Harith Farooq; Harith Farooq; Paola de L. Ferreira; Paola de L. Ferreira; Félix Forest; Félix Forest; Brian L. Fisher; Brian L. Fisher; Lauren M. Gardiner; Lauren M. Gardiner; Steven M. Goodman; Steven M. Goodman; Olwen M. Grace; Olwen M. Grace; Thaís B. Guedes; Thaís B. Guedes; Marie Henniges; Marie Henniges; Rowena Hill; Rowena Hill; Caroline E.R. Lehmann; Porter P. Lowry II; Porter P. Lowry II; Lovanomenjanahary Marline; Lovanomenjanahary Marline; Pável Matos-Maraví; Pável Matos-Maraví; Justin Moat; Justin Moat; Beatriz Neves; Beatriz Neves; Matheus G.C. Nogueira; Matheus G.C. Nogueira; Renske E. Onstein; Renske E. Onstein; Alexander S.T. Papadopulos; Oscar A. Perez; Leanne N. Phelps; Leanne N. Phelps; Peter Phillipson; Peter Phillipson; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Mijoro Rakotoarinivo; Mijoro Rakotoarinivo; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Franck Rakotonasolo; Franck Rakotonasolo; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Henintsoa Razanajatovo; Henintsoa Razanajatovo; Estelle Razanatsoa; Malin Rivers; Malin Rivers; Ferran Sayol; Ferran Sayol; Daniele Silvestro; Maria Fernanda Torres Jiménez; Kim Walker; Kim Walker; Barnaby E. Walker; Paul Wilkin; Jenny Williams; Jenny Williams; Thomas Ziegler; Thomas Ziegler; Alexandre Antonelli; Alexandre Antonelli; Hélène Ralimanana; James S. Borrell; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Stuart Cable; Nataly Allasi Canales; Rosie Clegg; Gabriel Damasco; Caroline E.R. Lehmann; Alexander S.T. Papadopulos; Oscar A. Perez; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Estelle Razanatsoa; Daniele Silvestro; Maria Fernanda Torres Jiménez; Barnaby E. Walker; Paul Wilkin (2022). Madagascar's extraordinary biodiversity: a data repository [Dataset]. http://doi.org/10.5281/zenodo.7326129
    Explore at:
    csv, zip, txtAvailable download formats
    Dataset updated
    Dec 2, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hélène Ralimanana; Allison L. Perrigo; Allison L. Perrigo; Rhian J. Smith; Rhian J. Smith; James S. Borrell; Angelica Crottini; Angelica Crottini; Søren Faurby; Søren Faurby; Jan Hackel; Jan Hackel; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Weston Testo; Weston Testo; Maria S. Vorontsova; Maria S. Vorontsova; Niels Andela; Niels Andela; Tobias Andermann; Tobias Andermann; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Steven P. Bachman; Steven P. Bachman; Christine D. Bacon; Christine D. Bacon; William J. Baker; William J. Baker; Francesco Belluardo; Francesco Belluardo; Stuart Cable; Nataly Allasi Canales; Juan D. Carillo; Juan D. Carillo; Rosie Clegg; Colin Clubbe; Colin Clubbe; Robert S.C. Cooke; Robert S.C. Cooke; Gabriel Damasco; Sonia Dhanda; Sonia Dhanda; Daniel Edler; Daniel Edler; Harith Farooq; Harith Farooq; Paola de L. Ferreira; Paola de L. Ferreira; Félix Forest; Félix Forest; Brian L. Fisher; Brian L. Fisher; Lauren M. Gardiner; Lauren M. Gardiner; Steven M. Goodman; Steven M. Goodman; Olwen M. Grace; Olwen M. Grace; Thaís B. Guedes; Thaís B. Guedes; Marie Henniges; Marie Henniges; Rowena Hill; Rowena Hill; Caroline E.R. Lehmann; Porter P. Lowry II; Porter P. Lowry II; Lovanomenjanahary Marline; Lovanomenjanahary Marline; Pável Matos-Maraví; Pável Matos-Maraví; Justin Moat; Justin Moat; Beatriz Neves; Beatriz Neves; Matheus G.C. Nogueira; Matheus G.C. Nogueira; Renske E. Onstein; Renske E. Onstein; Alexander S.T. Papadopulos; Oscar A. Perez; Leanne N. Phelps; Leanne N. Phelps; Peter Phillipson; Peter Phillipson; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Mijoro Rakotoarinivo; Mijoro Rakotoarinivo; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Franck Rakotonasolo; Franck Rakotonasolo; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Henintsoa Razanajatovo; Henintsoa Razanajatovo; Estelle Razanatsoa; Malin Rivers; Malin Rivers; Ferran Sayol; Ferran Sayol; Daniele Silvestro; Maria Fernanda Torres Jiménez; Kim Walker; Kim Walker; Barnaby E. Walker; Paul Wilkin; Jenny Williams; Jenny Williams; Thomas Ziegler; Thomas Ziegler; Alexandre Antonelli; Alexandre Antonelli; Hélène Ralimanana; James S. Borrell; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Stuart Cable; Nataly Allasi Canales; Rosie Clegg; Gabriel Damasco; Caroline E.R. Lehmann; Alexander S.T. Papadopulos; Oscar A. Perez; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Estelle Razanatsoa; Daniele Silvestro; Maria Fernanda Torres Jiménez; Barnaby E. Walker; Paul Wilkin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Madagascar
    Description

    Data repository for the two sister reviews of Madagascar's biodiversity:

    Please note the author order of this data repository is different from the author order and contributions in the review papers.

    REVIEW I: EVOLUTION, DISTRIBUTION AND USE

    • catalogue_of_vascular_plants_of_madagascar.csv -- Comma-separated table with comprehensive taxonomic database of vascular plants of Madagascar, from the Catalogue of the Vascular Plants of Madagascar project. Contact: Peter Phillipson - peter.phillipson@mobot.org and Marina Rabarimanarivo - marina.rabarimanarivo@mobot.mg
    • fungi_supplementary_material.zip -- Zipped archive containing: R script to get fungal endemism estimates from GBIF/UNITE and process data; comma-separated tables from GBIF, PlutoF, Goodman lichen checklist and Index Fungorum (as of 02/12/20): comma-separated table listing Madagascan taxa with endemism status. Contact: Rowena Hill - r.hill@kew.org
    • lineages_madagascar.csv -- Comma-separated table with crown and stem ages, number of species, and geographic origin or distribution of sister clade of Malagasy endemic lineages, extracted from the literature. Contact: Jan Hackel - j.hackel@kew.org and Angelica Crottini - tiliquait@yahoo.it
    • madagascar_fossil_genera_occurrences.csv -- Comma-separated table with worldwide fossil records for Malagasy species, downloaded from the PaleoBiology Database. -- Contact: Juan Carillo - juan.carrillo@mnhn.fr
    • species_richness_modeling_occurrences.csv -- Comma-separated table with specimen-based occurrence data for Malagasy amphibians, grasses, lemurs, palms, reptiles, and Sarcolaenaceae. Contact: Weston Testo - westontesto@gmail.com
    • taxon_description_by_year.csv -- Comma-separated table with years of basionym publication for Malagasy amphibians, reptiles, vascular plants, and ants. Contact: Weston Testo - westontesto@gmail.com
    • vegetation_moatsmith_1km_extended.zip -- Raster geotiff with new expanded vegetation types based on Moat & Smith (2007). Contact: Justin Moat - j.moat@kew.org
    • vertebrate_species_list.csv -- Comma-separated table with native species list and associated endemism of freshwater fishes, amphibians, reptiles, birds, and mammals of Madagascar (author-curated list based on data from The New Natural History of Madagascar and the IUCN Red List). Contact: Weston Testo - westontesto@gmail.com, Angelica Crottini - tiliquait@yahoo.it, Ferran Sayol - fsayol@gmail.com

    REVIEW II: THREATS AND OPPORTUNITIES

    • catalogue_of_vascular_plants_of_madagascar.csv -- Comma-separated table with comprehensive taxonomic database of vascular plants of Madagascar, from the Catalogue of the Vascular Plants of Madagascar project. Contact: Peter Phillipson - peter.phillipson@mobot.org and Marina Rabarimanarivo - marina.rabarimanarivo@mobot.mg
    • ex_situ_plants.csv -- Comma-separated table with numbers of ex situ conserved plant species, per family, from BGCI’s PlantSearch database and collections of Jardin Botanique Educatif and Parc Ivoloina. Contact: Malin Rivers - malin.rivers@bgci.org
    • ex_situ_vertebrates.csv -- Excel spreadsheet with the list of extant native Malagasy vertebrates with information on their presence in at least one international zoo holding and whether they have been bred successfully over the last 12 months. Data from the Zoological Information Management (ZIM) Software performed in February 2021. Contact: Angelica Crottini - tiliquait@yahoo.it
    • extinct_animals_madagascar.csv -- Comma-separated table of all known anthropogenic extinctions before 1500 CE in Madagascar. Contact: Ferran Sayol - fsayol@gmail.com
    • madagascar_protected_areas_sources.csv -- Comma-separated table with comments and sources for columns in the protected area data in the csv and shapefile. Contact: Maria S. Vorontsova - m.vorontsova@kew.org
    • madagascar_terrestrial_protected_areas.csv -- Comma-separated values with description of the pretected areas, matching the Protected Area Shapefile. This file contains French accents; correct display may depend on the software used. Contact: Daniel Edler - daniel.edler@umu.se and Henintsoa Razanajatovo - H.Razanajatovo@kew.org
    • madagascar_terrestrial_protected_areas.zip -- ESRI Shapefile for the synthesized protected areas of Madagascar, including Key Biodiversity Areas and attributes. Contact: Daniel Edler - daniel.edler@umu.se and Rasolohery Andriambolantsoa - arasolohery@ileiry.com
    • observed_and_predicted_threats.csv -- Comma-separated table with the number of species with each listed threat, as defined by the IUCN or predicted by our model, across taxonomic groups. Contact: Rob Cooke - 03rcooke@gmail.com
    • phylogenetic_diversity_methods.zip -- Zipped archive containing community matrices, species range shapefiles, and R script used to estimate phylogenetic diversity for amphibians, mammals, and reptiles. Contact: Weston Testo - westontesto@gmail.com
    • predicting_species_IUCN_status.zip -- Zipped archive containing data, scripts and an Rstudio project to: (1) prepare features for using IUCNN v1.0 to predict the conservation status for Not Evaluated species (01_feature_preparation); (2) predict species IUCN status assessment using neural networks (02_predicting_species_IUCN_status); (3) predict species’ threat status using neural networks (03_predicting_species_threats). Contact: Alexander Zizka - alexander.zizka@biologie.uni-marburg.de and Daniele Silvestro - daniele.silvestro@unifr.ch
    • threat_predictions_iucnn.txt -- Tab-separated table with results of the conservation status prediction from a Bayesian Neural Network for 5,887 species of vascular plants from Madagascar. Values are the mean posterior probabilities for each IUCN Red List category. Contact: Daniele Silvestro - daniele.silvestro@unifr.ch
  7. Madagascar's extraordinary biodiversity: a data repository

    • zenodo.org
    Updated Dec 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hélène Ralimanana; Allison L. Perrigo; Allison L. Perrigo; Rhian J. Smith; Rhian J. Smith; James S. Borrell; Angelica Crottini; Angelica Crottini; Søren Faurby; Søren Faurby; Jan Hackel; Jan Hackel; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Weston Testo; Weston Testo; Maria S. Vorontsova; Maria S. Vorontsova; Niels Andela; Niels Andela; Tobias Andermann; Tobias Andermann; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Steven P. Bachman; Steven P. Bachman; Christine D. Bacon; Christine D. Bacon; William J. Baker; William J. Baker; Francesco Belluardo; Francesco Belluardo; Stuart Cable; Nataly Allasi Canales; Juan D. Carillo; Juan D. Carillo; Rosie Clegg; Colin Clubbe; Colin Clubbe; Robert S.C. Cooke; Robert S.C. Cooke; Gabriel Damasco; Sonia Dhanda; Sonia Dhanda; Daniel Edler; Daniel Edler; Harith Farooq; Harith Farooq; Paola de L. Ferreira; Paola de L. Ferreira; Félix Forest; Félix Forest; Brian L. Fisher; Brian L. Fisher; Lauren M. Gardiner; Lauren M. Gardiner; Steven M. Goodman; Steven M. Goodman; Olwen M. Grace; Olwen M. Grace; Thaís B. Guedes; Thaís B. Guedes; Marie Henniges; Marie Henniges; Rowena Hill; Rowena Hill; Caroline E.R. Lehmann; Porter P. Lowry II; Porter P. Lowry II; Lovanomenjanahary Marline; Lovanomenjanahary Marline; Pável Matos-Maraví; Pável Matos-Maraví; Justin Moat; Justin Moat; Beatriz Neves; Beatriz Neves; Matheus G.C. Nogueira; Matheus G.C. Nogueira; Renske E. Onstein; Renske E. Onstein; Alexander S.T. Papadopulos; Oscar A. Perez; Leanne N. Phelps; Leanne N. Phelps; Peter Phillipson; Peter Phillipson; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Mijoro Rakotoarinivo; Mijoro Rakotoarinivo; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Franck Rakotonasolo; Franck Rakotonasolo; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Henintsoa Razanajatovo; Henintsoa Razanajatovo; Estelle Razanatsoa; Malin Rivers; Malin Rivers; Ferran Sayol; Ferran Sayol; Daniele Silvestro; Maria Fernanda Torres Jiménez; Kim Walker; Kim Walker; Barnaby E. Walker; Paul Wilkin; Jenny Williams; Jenny Williams; Thomas Ziegler; Thomas Ziegler; Alexandre Antonelli; Alexandre Antonelli; Hélène Ralimanana; James S. Borrell; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Stuart Cable; Nataly Allasi Canales; Rosie Clegg; Gabriel Damasco; Caroline E.R. Lehmann; Alexander S.T. Papadopulos; Oscar A. Perez; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Estelle Razanatsoa; Daniele Silvestro; Maria Fernanda Torres Jiménez; Barnaby E. Walker; Paul Wilkin (2022). Madagascar's extraordinary biodiversity: a data repository [Dataset]. http://doi.org/10.5281/zenodo.6586742
    Explore at:
    Dataset updated
    Dec 2, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hélène Ralimanana; Allison L. Perrigo; Allison L. Perrigo; Rhian J. Smith; Rhian J. Smith; James S. Borrell; Angelica Crottini; Angelica Crottini; Søren Faurby; Søren Faurby; Jan Hackel; Jan Hackel; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Weston Testo; Weston Testo; Maria S. Vorontsova; Maria S. Vorontsova; Niels Andela; Niels Andela; Tobias Andermann; Tobias Andermann; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Steven P. Bachman; Steven P. Bachman; Christine D. Bacon; Christine D. Bacon; William J. Baker; William J. Baker; Francesco Belluardo; Francesco Belluardo; Stuart Cable; Nataly Allasi Canales; Juan D. Carillo; Juan D. Carillo; Rosie Clegg; Colin Clubbe; Colin Clubbe; Robert S.C. Cooke; Robert S.C. Cooke; Gabriel Damasco; Sonia Dhanda; Sonia Dhanda; Daniel Edler; Daniel Edler; Harith Farooq; Harith Farooq; Paola de L. Ferreira; Paola de L. Ferreira; Félix Forest; Félix Forest; Brian L. Fisher; Brian L. Fisher; Lauren M. Gardiner; Lauren M. Gardiner; Steven M. Goodman; Steven M. Goodman; Olwen M. Grace; Olwen M. Grace; Thaís B. Guedes; Thaís B. Guedes; Marie Henniges; Marie Henniges; Rowena Hill; Rowena Hill; Caroline E.R. Lehmann; Porter P. Lowry II; Porter P. Lowry II; Lovanomenjanahary Marline; Lovanomenjanahary Marline; Pável Matos-Maraví; Pável Matos-Maraví; Justin Moat; Justin Moat; Beatriz Neves; Beatriz Neves; Matheus G.C. Nogueira; Matheus G.C. Nogueira; Renske E. Onstein; Renske E. Onstein; Alexander S.T. Papadopulos; Oscar A. Perez; Leanne N. Phelps; Leanne N. Phelps; Peter Phillipson; Peter Phillipson; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Mijoro Rakotoarinivo; Mijoro Rakotoarinivo; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Franck Rakotonasolo; Franck Rakotonasolo; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Henintsoa Razanajatovo; Henintsoa Razanajatovo; Estelle Razanatsoa; Malin Rivers; Malin Rivers; Ferran Sayol; Ferran Sayol; Daniele Silvestro; Maria Fernanda Torres Jiménez; Kim Walker; Kim Walker; Barnaby E. Walker; Paul Wilkin; Jenny Williams; Jenny Williams; Thomas Ziegler; Thomas Ziegler; Alexandre Antonelli; Alexandre Antonelli; Hélène Ralimanana; James S. Borrell; Mamy T. Rajaonah; Tianjanahary Randriamboavonjy; Andotiana Mihajamalala Andriamanohera; Sylvie Andriambololonera; Stuart Cable; Nataly Allasi Canales; Rosie Clegg; Gabriel Damasco; Caroline E.R. Lehmann; Alexander S.T. Papadopulos; Oscar A. Perez; Samuel Pironon; Natalia A.S. Przelomska; Marina Rabarimanarivo; David Rabehevitra; Jeannie Raharimampionona; Fano Rajaonary; Landy R. Rajaovelona; Andry Rakotoarisoa; Solofo E. Rakotoarisoa; Nantenaina Rakotomalala; Anna B. Ralaiveloarisoa; Myriam Ramirez-Herranz; Nomentsoa J.E. Randriamamonjy; Vonona Randrianasolo; Andriambolantsoa Rasolohery; Anitry N. Ratsifandrihamanana; Noro Ravololomanana; Velosoa Razafiniary; Estelle Razanatsoa; Daniele Silvestro; Maria Fernanda Torres Jiménez; Barnaby E. Walker; Paul Wilkin
    Area covered
    Madagascar
    Description

    Data repository for the double review on Madagascar's biodiversity [ADD FULL CITATIONS + DOI WHEN ACCEPTED]

    REVIEW I: EVOLUTION, DISTRIBUTION AND USE

    • CatalogueOfVascularPlantsOfMadagascar.csv -- Comma-separated table with comprehensive taxonomic database of vascular plants of Madagascar, from the “Catalogue of the Vascular Plants of Madagascar” project. Contact: Peter Phillipson - peter.phillipson@mobot.org and Marina Rabarimanarivo - marina.rabarimanarivo@mobot.mg
    • Fossils_Madagascar.csv -- Comma-separated table with Malagasy fossil records, downloaded from the PaleoBiology Database. Contact: Juan Carillo - juan.carrillo@mnhn.fr [REMOVE - NOT USED]
    • Fungi_supplementary_material.zip -- Zipped archive containing: R script to get fungal endemism estimates from GBIF/UNITE and process data; comma-separated tables from GBIF, PlutoF, Goodman lichen checklist and Index Fungorum (as of 02/12/20): comma-separated table listing Madagascan taxa with endemism status. Contact: Rowena Hill - r.hill@kew.org
    • Genera_records_world.csv -- Comma-separated table with worldwide fossil records for Malagasy species, downloaded from the PaleoBiology Database. -- Juan Carillo - juan.carrillo@mnhn.fr [ADD FILE AND RENAME AS Malagasy_fossil_genera_occurrences.csv]
    • lineage_data_clean_v4.csv -- Comma-separated table with crown and stem ages, number of species, and geographic origin or distribution of sister clade of Malagasy endemic lineages, extracted from the literature. Contact: Jan Hackel - j.hackel@kew.org and Angelica Crottini - tiliquait@yahoo.it
    • moatsmith_1km_extended.zip -- Raster geotiff with new expanded vegetation types based on Moat & Smith (2007). Contact: Justin Moat - j.moat@kew.org
    • SpeciesRichnessModelingOccurrences.csv -- Comma-separated table with specimen-based occurrence data for Malagasy amphibians, grasses, lemurs, palms, reptiles, and Sarcolaenaceae. Contact: Weston Testo - westontesto@gmail.com
    • TaxonDescriptionByYear.csv -- Comma-separated table with years of basionym publication for Malagasy amphibians, reptiles, vascular plants, and ants. Contact: Weston Testo - westontesto@gmail.com
    • VertebrateSpeciesList.csv -- Comma-separated table with species list of freshwater fish, amphibians, reptiles, birds and mammals of Madagascar (curated list based on IUCN data). Contact: Weston Testo - westontesto@gmail.com [FILE TO UPDATE]

    REVIEW II: THREATS AND OPPORTUNITIES

    • CatalogueOfVascularPlantsOfMadagascar.csv -- Comma-separated table with comprehensive taxonomic database of vascular plants of Madagascar, from the “Catalogue of the Vascular Plants of Madagascar” project. Contact: Peter Phillipson - peter.phillipson@mobot.org and Marina Rabarimanarivo - marina.rabarimanarivo@mobot.mg
    • Ex_situ_plants.xlsx -- Excel spreadsheet with numbers of ex situ conserved plant species, per family, from BGCI’s PlantSearch database and collections of Jardin Botanique Educatif and Parc Ivoloina. Contact: Malin Rivers - malin.rivers@bgci.org
    • Ex_situ_vertebrates.xlsx -- Excel spreadsheet with the list of extant native Malagasy vertebrates with information on their presence in at least one international zoo holding and whether they have been bred successfully over the last 12 months. Data from the Zoological Information Management (ZIM) Software performed in February 2021. Contact: Angelica Crottini - tiliquait@yahoo.it [FILE TO UPDATE]
    • Extinct_Animals_madagascar.csv -- Comma-separated table of all known anthropogenic extinctions before 1500 CE in Madagascar. Contact: Ferran Sayol - fsayol@gmail.com
    • features_predict210325_predictions.txt -- Tab-separated table with results of the conservation status prediction from a Bayesian Neural Network for 5,887 species of vascular plants from Madagascar. Values are the mean posterior probabilities for each IUCN Red List category. Contact: Daniele Silvestro - daniele.silvestro@unifr.ch
    • Madagascar Protected Areas - Sources.csv -- Comma-separated table with comments and sources for columns in the protected area data in the csv and shapefile. Contact: Maria S. Vorontsova - m.vorontsova@kew.org
    • Madagascar_terrestrial_protected_areas.csv -- Comma-separated values with description of the pretected areas, matching the Protected Area Shapefile. Contact: Daniel Edler - daniel.edler@umu.se and Henintsoa Razanajatovo - H.Razanajatovo@kew.org
    • Madagascar_terrestrial_protected_areas.zip -- ESRI Shapefile for the synthesized protected areas of Madagascar, including Key Biodiversity Areas and attributes. Contact: Daniel Edler - daniel.edler@umu.se and Rasolohery Andriambolantsoa - arasolohery@ileiry.com
    • Observed_and_predicted_threats.csv -- Comma-separated table with the number of species with each listed threat, as defined by the IUCN or predicted by our model, across taxonomic groups. Contact: Rob Cooke - 03rcooke@gmail.com
    • PhylogeneticDiversityMethods.zip -- Zipped archive containing community matrices, species range shapefiles, and R script used to estimate phylogenetic diversity for amphibians, mammals, and reptiles. Contact: Weston Testo - westontesto@gmail.com
    • predicting_species_IUCN_status.zip -- Zipped archive containing data, scripts and an Rstudio project to: (1) prepare features for using IUCNN v1.0 to predict the conservation status for Not Evaluated species (01_feature_preparation); (2) predict species IUCN status assessment using neural networks (02_predicting_species_IUCN_status); (3) predict species’ threat status using neural networks (03_predicting_species_threats). Contact: Alexander Zizka - alexander.zizka@idiv.de and Daniele Silvestro - daniele.silvestro@unifr.ch
  8. d

    Marine Key Ecological Features

    • fed.dcceew.gov.au
    • amsis-geoscience-au.hub.arcgis.com
    • +1more
    Updated May 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept of Climate Change, Energy, the Environment & Water (2023). Marine Key Ecological Features [Dataset]. https://fed.dcceew.gov.au/datasets/erin::marine-key-ecological-features/about
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    Dept of Climate Change, Energy, the Environment & Water
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    Key ecological features are the parts of the marine ecosystem that are considered to be of importance for a marine region's biodiversity or ecosystem function and integrity.Key ecological features (KEFs) meet one or more of the following criteria:a species, group of species, or a community with a regionally important ecological role (e.g. a predator, prey that affects a large biomass or number of other marine species);a species, group of species, or a community that is nationally or regionally important for biodiversity;an area or habitat that is nationally or regionally important for:enhanced or high productivity (such as predictable upwellings - an upwelling occurs when cold nutrient-rich waters from the bottom of the ocean rise to the surface);aggregations of marine life (such as feeding, resting, breeding or nursery areas);biodiversity and endemism (species which only occur in a specific area); ora unique seafloor feature, with known or presumed ecological properties of regional significance.KEFs have been identified by the Australian Government on the basis of advice from scientists about the ecological processes and characteristics of the area. A workshop held in Darwin in 2007 also contributed to this scientific advice and helped to underpin the identification of key ecological features.As new information becomes available, the spatial representations of identified key ecological features will continue to be refined and updated.Sixteen KEFs have been identified in the South-west Marine Region:Commonwealth marine environment surrounding the Houtman Abrolhos IslandsPerth Canyon and adjacent shelf break, and other west coast canyonsCommonwealth marine environment within and adjacent to the west coast inshore lagoonsCommonwealth marine environment within and adjacent to Geographe BayCape Mentelle upwellingNaturaliste PlateauDiamantina Fracture ZoneAlbany Canyons group and adjacent shelf breakCommonwealth marine environment surrounding the Recherche ArchipelagoAncient coastline at 90-120 m depthKangaroo Island Pool, canyons and adjacent shelf break, and Eyre Peninsula upwellings.Meso-scale eddies (points).Western demersal slope and associated fish communities.Western rock lobster.Benthic invertebrate communities of the eastern Great Australian Bight. No spatial representation available.Small pelagic fish of the South-west Marine Region. No spatial representation available.Thirteen KEFs have been identified in the North-west Marine Region:Ancient coastline at 125 m depth contourAshmore Reef and Cartier Island and surrounding Commonwealth watersCanyons linking the Argo Abyssal Plain and Scott PlateauCanyons linking the Cuvier Abyssal Plain and the Cape Range PeninsulaCarbonate bank and terrace system of the Sahul ShelfCommonwealth waters adjacent to Ningaloo ReefContinental Slope Demersal Fish CommunitiesExmouth PlateauGlomar ShoalsMermaid Reed and Commonwealth waters surrounding the Rowley ShoalsPinnacles of the Bonaparte BasinSeringapatam Reef and Commonwealth waters in the Scott Reef ComplexWallaby SaddleEight KEFs have been identified in the North Marine Region:Carbonate bank and terrace system of the Van Diemen RiseShelf break and slope of the Arafura ShelfTributary canyons of the Arafura DepressionGulf of Carpentaria basinGulf of Carpentaria coastal zonePlateaux and saddle north-west of the Wellesley IslandsPinnacles of the Bonaparte BasinSubmerged coral reefs of the Gulf of CarpentariaThree KEFs have been identified in the Coral Sea:Tasmantid seamount chainReefs, cays and hebivorous fish of the Queensland PlateauReefs, cays and hebivorous fish of the Marion PlateauEight KEFs were identified in the Temperate East marine Region:Tasmantid seamount chainLord Howe seamount chainNorfolk RidgeCanyons on the eastern continental slopeShelf rocky reefsElizabeth and Middleton reefsUpwelling off Fraser IslandTasman Front and eddy fieldEight KEFs were identified in the South-east Marine Region.Seamounts, east and south of TasmaniaWest Tasmanian canyonsBonney coast upwellingUpwelling east of EdenBig Horseshoe canyonEast Tasmania tropical convergence zone. No spatial representation availableBass cascade. No spatial representation availableShelf rocky reefs and hard substrate. No spatial representation availableIn order to create a spatial representation of KEFs for each Marine Region, some interpretation of the information was required. DSEWPaC has made every effort to use the best available spatial information and best judgement on how to spatially represent the features based on the scientific advice provided. This does not preclude others from making their own interpretation of available information.

  9. w

    Fauna Corridors for North East NSW

    • data.wu.ac.at
    zip
    Updated Oct 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Programme (2018). Fauna Corridors for North East NSW [Dataset]. https://data.wu.ac.at/schema/data_gov_au/MmEyYmI2MmQtYzFlMS00ZGU1LTg4ZTUtYjQxOWM5MDkzNTRl
    Explore at:
    zip(15134610.0)Available download formats
    Dataset updated
    Oct 9, 2018
    Dataset provided by
    Bioregional Assessment Programme
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    Abstract

    This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied:

    Layer of regional and subregional linking corridors for fauna of the Upper North East (UNE) and Lower North East (LNE) NSW RFA regions. A new GIS program, NPWS CORRIDORS, was used to derive potential landscape linkages (habitat corridors) based on the predicted distributions of priority fauna species assemblages (see metadata for fauna key habitats). These ESRI grid outputs were refined, under a series of decision rules, to derive final corridor ESRI shapefile polygons. The final corridors map layer is a regional representation displaying the most likely occurrence of linking corridors for fauna consolidated at the regional scale. The mapping and derivation has been based on state-of-the-art data and GIS tools combined with qualitative interpretation based on ecological principles and expertise. As of April 2001, the mapping has not been formally field tested and the methods have not been peer-reviewed outside several conference and workshop presentations, all well received. A journal paper and project report are in preparation.

    Additional metadata

    Gilmore, A. M. and Parnaby, H. E., 1994. Vertebrate Fauna of Conservation Concern in North-East NSW Forests. North East Forests Biodiversity Study, Report No. 3e, unpublished report, NSW National Parks and Wildlife Service. Metadata statement for UNE/LNE Key Habitats. Metadata statement for UNE/LNE RFA Centres of Endemism. NPWS, 1994a. Environmental GIS database for north-east NSW. North East Forests Biodiversity Study, Report No. 2, unpublished report, NSW National Parks and Wildlife Service. NPWS, 1994b. Fauna of North-East NSW Forests. North East Forests Biodiversity Study, Report No. 3, unpublished report, NSW National Parks and Wildlife Service. NPWS 1999. Modelling areas of habitat significance for vertebrate fauna and vascular flora in north east NSW. A project undertaken for the Joint Commonwealth NSW Regional Forest Agreement Steering Committee as part of the NSW Comprehensive Regional Assessments. Scotts, D., Drielsma, M, Whish, G. and Kingma, L. in prep. Regional key habitats and corridors for forest fauna of north-east New South Wales; a framework to focus conservation planning, assessment and management.

    Dataset History

    Lineage: Lineage The process employed in deriving fauna corridors is explicit and repeatable in as much as: * The fauna species models, which are the basic biodiversity entities that the project seeks to summarise and integrate are stored and held by NPWS; * All relevant data layers, developed at each stage of the project, are stored and held by NPWS; * The Geographic Information System (GIS) tools developed for the analyses are available as extensions to the ARCVIEW GIS. At numerous stages of the analyses, informed interpretation of outputs and assignment of thresholds has been required to move the process along or to finalise an output. Any qualitative decisions taken have been based on the project manager's ecological expertise and knowledge of the data sets being considered. Habitat corridors have been mapped across public and private lands. The process of deriving and mapping regional corridors for fauna has involved the use of fauna assemblage distributions and fauna key habitats (see additional metadata referenced below), as surrogates for areas of high fauna conservation, and as the actual habitats to be linked. This involved a 4 step process which is detailed below: STEP 1. UNDERTAKE LEAST COST PATHWAYS ANALYSES TO DERIVE POTENTIAL REGIONAL AND SUB-REGIONAL CORRIDORS A technique has been developed and refined by the Research and Development Unit of the NPWS GIS Division to aid with the delineation of habitat corridors; NPWS CORRIDORS is used as an extension to the ARCVIEW GIS program. CORRIDORS is used to identify the pathways that most efficiently link identified significant landscape elements or habitats. The program operates under the principle that species, and their constituent genes, are most likely to move (while foraging, dispersing, breeding, migrating) along gradients of preferred habitat; non-preferred habitats representing varying levels of impedance or even barriers. For any particular biodiversity entity, in this case species assemblages, the most efficient landscape links are those that exact the "least cost", in terms of energy expenditure, for their use. More favourable habitats, be it for foraging, roosting, nesting or as transitory movements, are assumed to exact less cost for their use than less favourable marginal or non-habitats. Non-habitats may include areas of native vegetation that are simply not suitable for use by the species assemblage concerned. They also include areas that have been cleared of native vegetation and developed for human uses such as agriculture and urban expansion. The basic requirement of the CORRIDORS program is a "cost grid". This is a continuous probability surface covering the entire study area and describing the relative costs, to a particular biodiversity entity (e.g. a species or species assemblage), of utilizing each grid cell within the area as habitat, or as a potential linking pathway. Cost grids were derived for the KHC Project through a combination of the assemblage habitat map layer and existing maps of extant vegetation and land tenure. The derived cost grids reflect levels of habitat suitability and tenure class for every grid cell available as a potential linking pathway. Predicted habitats for the assemblage are deemed the least costly pathways, the best predicted habitat class (class 3) carrying the least cost. Extant vegetation that is not predicted habitat represents a less costly path than cleared land. Within each habitat suitability class, tenure is weighted to place greater cost on private lands as opposed to public lands and, within public lands, a greater cost on state forests as opposed to NPWS estate and Crown Reserves managed by NPWS. The effect of tenure weightings is to favour reserved lands over state forests over private lands as corridor links, all else being equal. Additional costs were applied to mapped estuaries making it more "costly", but not impossible, for the program to link across these features, relative to alternative links, all else being equal. The CORRIDORS program utilizes paired reference points, assigned in an iterative manner and apportioned within focal habitat types (e.g. assemblage habitats and key habitats), which it works to via the most efficient pathways available according to the cost grid. The reference points are directed into identified strategic areas, making them focal areas for landscape links. For the purposes of the KHC Project analyses 10,000 reference points were used and assigned to the predicted assemblage habitats with a minimum proportion directed into fauna core habitats. In seeking to establish the most ecologically valid corridor network for the KHC Project study areas the LCP analyses were undertaken at two levels: Level 1: a CORRIDORS analysis for each of the each identified fauna assemblage independently (7 for UNC, 7 for LNC, 6 for TAB and 5 for SYD); Level 2: a CORRIDORS analysis for the combined assemblages within each study area. These two levels were selected in order to pursue the goal of enhancing overall landscape connectivity. The first level will establish potential corridor links for species within each assemblage, a clear goal of landscape ecology. The second level will consolidate the landscape approach, whereby the mosaics of habitats and species assemblages across a landscape are treated as one functional system, another ecological requirement enhancing overall landscape connectivity. These between assemblage corridors are also intended to provide for larger scale dispersal and movement (e.g. migration) between predicted assemblage habitats. The CORRIDORS outputs are continuous probability surface models (map layers) depicting the pathways of least cost linking habitats, and particularly core habitats, of each fauna assemblage individually, plus a combined assemblages run for each KHC study area. These map layers can be used as planning entities in their own right or, as in this project, can be combined and weighted to derive regional and sub-regional corridors. STEP 2. DERIVING REGIONAL AND SUB-REGIONAL CORRIDOR GRIDS FROM "CORRIDORS" PROGRAM OUTPUTS The CORRIDORS outputs represent potential corridors; assessing them and moving them from potential corridors to Regional and Sub-regional corridors followed another set process for each KHC study area: A. Reclassify the continuous probability surface layers depicting the potential corridors for each assemblage to five classes; 0,1,2,3,4, based on perceived thresholds of significance, with class 4 being those potential corridors at the highest probability end of the scale, and of the highest priority for that assemblage; B. Do the same for the between assemblage potential corridors for each KHC study area; C. For each KHC study area, combine the classified assemblage, and between assemblage corridor grids and sum the combined classes; D. Apply thresholds to delineate Regional and Sub-regional corridors; E. For interim display purposes (prior to final conversion of the grid map layers to polygon map layers) use existing vegetation mapping to intersect the derived corridors map layers and display vegetated and non-vegetated portions of the regional and sub-regional corridors. Regional and sub-regional corridors extend across all tenures with certain private lands being crucial links in the network. In many instances, the least costly pathway to link some assemblage habitats crossed cleared lands. The potential regional and sub-regional corridor grid map layers depicting potential corridors linking predicted fauna assemblage habitats are available

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UN Environment World Conservation Monitoring Centre (UNEP-WCMC) (2022). World Database on Protected Areas [Dataset]. https://fsm-data.sprep.org/dataset/world-database-protected-areas

Data from: World Database on Protected Areas

Related Article
Explore at:
html, jpeg, pdf, zip, geojson, websiteAvailable download formats
Dataset updated
Feb 15, 2022
Dataset provided by
The Nature Conservancy
Authors
UN Environment World Conservation Monitoring Centre (UNEP-WCMC)
License

Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically

Area covered
136.54769897461 7.3188817303668, 152.98324584961 3.995780512963, 142.61215209961 5.5722498011139, 153.42269897461 9.9255659124055, 154.38949584961 0.39550467153202, 155.88363647461 0.043945308191358, 164.23324584961 4.7844689665794, 162.91488647461 6.1842461612806, POLYGON ((136.54769897461 10.531020008465, 139.71176147461 11.135287077054)), Federated States of Micronesia
Description

The World Database on Protected Areas (WDPA) is the most comprehensive global database of marine and terrestrial protected areas, updated on a monthly basis, and is one of the key global biodiversity data sets being widely used by scientists, businesses, governments, International secretariats and others to inform planning, policy decisions and management. The WDPA is a joint project between UN Environment and the International Union for Conservation of Nature (IUCN). The compilation and management of the WDPA is carried out by UN Environment World Conservation Monitoring Centre (UNEP-WCMC), in collaboration with governments, non-governmental organisations, academia and industry. There are monthly updates of the data which are made available online through the Protected Planet website where the data is both viewable and downloadable. Data and information on the world's protected areas compiled in the WDPA are used for reporting to the Convention on Biological Diversity on progress towards reaching the Aichi Biodiversity Targets (particularly Target 11), to the UN to track progress towards the 2030 Sustainable Development Goals, to some of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) core indicators, and other international assessments and reports including the Global Biodiversity Outlook, as well as for the publication of the United Nations List of Protected Areas. Every two years, UNEP-WCMC releases the Protected Planet Report on the status of the world's protected areas and recommendations on how to meet international goals and targets. Many platforms are incorporating the WDPA to provide integrated information to diverse users, including businesses and governments, in a range of sectors including mining, oil and gas, and finance. For example, the WDPA is included in the Integrated Biodiversity Assessment Tool, an innovative decision support tool that gives users easy access to up-to-date information that allows them to identify biodiversity risks and opportunities within a project boundary. The reach of the WDPA is further enhanced in services developed by other parties, such as the Global Forest Watch and the Digital Observatory for Protected Areas, which provide decision makers with access to monitoring and alert systems that allow whole landscapes to be managed better. Together, these applications of the WDPA demonstrate the growing value and significance of the Protected Planet initiative.

Search
Clear search
Close search
Google apps
Main menu