26 datasets found
  1. COVID-19 cases per 100,000 people Malaysia 2023, by state

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, COVID-19 cases per 100,000 people Malaysia 2023, by state [Dataset]. https://www.statista.com/statistics/1107426/malaysia-covid-19-confirmed-cases-by-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Malaysia
    Description

    As of November 4, 2023, Malaysian states of Putrajaya and Kuala Lumpur had respectively around 36.1 and 30.6 coronavirus (COVID-19) confirmed cases per 100,000 people, the highest in the country. Malaysia is experiencing a decrease in cases, although the country still expecting a rise due to the highly contagious variant of Omicron.

    Malaysia is currently one out of more than 200 countries and territories battling with the novel coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  2. g

    Coronavirus (COVID-19): SARS-CoV-2 in wastewater and positive persons tested...

    • gimi9.com
    Updated Sep 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Coronavirus (COVID-19): SARS-CoV-2 in wastewater and positive persons tested for SARS-CoV-2 | gimi9.com [Dataset]. https://gimi9.com/dataset/eu_100187-kanton-basel-stadt
    Explore at:
    Dataset updated
    Sep 4, 2025
    Description

    The dataset shows the 7-day median of the RNA copies of the specified virus per day and 100’000 people in the wastewater treatment plant (ARA) Basel as well as the 7-day median of the corresponding case numbers. The data set is usually updated on Tuesdays with the data until the previous Sunday. ProRheno AG (operator of ARA Basel) takes a 24h sample of the raw waste water, which is examined for RNA of the specified viruses by the Cantonal Laboratory Basel-Stadt (KL BS). The measurement methodology has not been changed since the beginning of the monitoring: see publication https://smw.ch/index.php/smw/article/view/3226. The plausibility of the values is continuously checked against internal quality parameters. The study area comprises the catchment area of the ARA Basel, which consists mainly of the canton of Basel-Stadt as well as the municipalities of Allschwil, Binningen, Birsfelden, Bottmingen, Oberwil and Schönenbuch (all Canton Baselland). Until the end of June 2023, the measured values of the KL BS were also presented on the wastewater dashboard of the BAG Covid-19 Switzerland | Coronavirus | Dashboard (https://www.covid19.admin.ch/de/epidemiologic/waste-water?wasteWaterFacility=270101). As of July 2023, the measured values of the EAWAG SARS-CoV2 in wastewater – Eawag (https://www.eawag.ch/de/abteilung/sww/projekte/sars-cov2-im-abwasser/) will be published on this page, which also examines the raw wastewater of ARA Basel. The examination methods used by KL BS and EAWAG are very similar but not identical.Case figures correspond to the number of confirmed and reported cases of infections in the catchment area of ARA Basel.Interpretation of curvesThe monitoring of viruses in wastewater is primarily about identifying trends (in particular, of course, the increase of a circulating virus). It is not possible to derive a certain number of cases or the severity of an infection. A comparison of the curve rash (height of peaks) at different times is hardly possible, because different virus variants lead to different amounts of virus per case. Different virus variants can also affect the symptoms, so that, for example, infections in humans run without a trace, but nevertheless viruses are released into the wastewater.

  3. S

    The role of risk perception and risk prevention in risk communication...

    • scidb.cn
    Updated Mar 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yifei Dong; Yuge Hu; Siti Ezaleila Mustafa; FADLI BIN ABDULLAH (2024). The role of risk perception and risk prevention in risk communication process: The case of COVID-19 pandemic in Kuala Lumpur, Malaysia [Dataset]. http://doi.org/10.57760/sciencedb.16945
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 19, 2024
    Dataset provided by
    Science Data Bank
    Authors
    Yifei Dong; Yuge Hu; Siti Ezaleila Mustafa; FADLI BIN ABDULLAH
    Area covered
    Federal Territory of Kuala Lumpur, Malaysia
    Description

    Research Design and Target PopulationThis research uses purposive sampling to filter the respondents. This study targeted Malaysian citizens who live in Kuala Lumpur and are of both genders and age groups from 18 to 60. A questionnaire was made by using a 5-point Likert scale. The online survey was conducted on the Google Form platform and distributed to Kuala Lumpur regions through Google, Facebook, and WhatsApp. Google Forms is a survey administration software that is included as part of the free, web-based Google Docs Editors suite offered by Google. The researchers in the Kuala Lumpur region spread out the offline survey. All data were collected through an online survey from October 17 to November 15, 2023.Research InstrumentThe survey is adapted from the WHO-RCCE questionnaire (Risk Communication and Community Engagement Tool) from the WHO website. The questionnaire was translated into Malay, tested, and validated by risk management and social science experts. Online questionnaires were distributed as an online survey using social media platforms such as Facebook, WhatsApp, and Twitter in two languages (Malay and English). Results from respondents who are only between 18 and 60 are accepted.

  4. Z

    Data from: Japanese COVID-19 Tweets from 2020-01-17 to 2020-04-30...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    • +1more
    Updated Jul 1, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Toriumi, Fujio; Sakaki, Takeshi; Yoshida, Mitsuo (2020). Japanese COVID-19 Tweets from 2020-01-17 to 2020-04-30 (40,720,545 tweets and 105,317,606 retweets) [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_3892866
    Explore at:
    Dataset updated
    Jul 1, 2020
    Dataset provided by
    Hottolink, Inc.
    The University of Tokyo
    Toyohashi University of Technology
    Authors
    Toriumi, Fujio; Sakaki, Takeshi; Yoshida, Mitsuo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Abstract (our paper)

    The spread of COVID-19, the so-called new coronavirus, is currently having an enormous social and economic impact on the entire world. Under such a circumstance, the spread of information about the new coronavirus on SNS is having a significant impact on economic losses and social decision-making. In this study, we investigated how the new type of coronavirus has become a social topic in Japan, and how it has been discussed. In order to determine what kind of impact it had on people, we collected and analyzed Japanese tweets containing words related to the new corona on Twitter. First, we analyzed the bias of users who tweeted. As a result, it is clear that the bias of users who tweeted about the new coronavirus almost disappeared after February 28, 2020, when the new coronavirus landed in Japan and a state of emergency was declared in Hokkaido, and the new corona became a popular topic. Second, we analyzed the emotional words included in tweets to analyze how people feel about the new coronavirus. The results show that the occurrence of a particular social event can change the emotions expressed on social media.

    Data

    Tweets_YYYY-MM-DD.tsv.gz: The first column is the tweet id, the second column is the date and time (JST) when the tweet was posted, the third column is the flag as to whether the tweet was used for emotion analysis or not, and the fourth column is the tweet id of the retweet source. This data was collected by giving the query "新型肺炎 OR 武漢 OR コロナ OR ウイルス OR ウィルス" to the Twitter Search API. Therefore, most of the tweets are Japanese tweets. We conducted emotion analysis on tweets, excluding retweets and tweets containing links. The fourth column is empty if the tweet is not a retweet.

    KL-Divergence.tsv.gz: The first column is the date (JST), and the second column is the value of KL-Divergence that calculated the bias of the users who posted tweets related to COVID-19. The value of KL-Divergence was calculated with all users appearing in Tweets_YYYY-MM-DD.tsv.gz. Based on the sampling stream data, we determined that if the value is below 0.6, there is no bias.

    Emotions_by_ML-Ask.tsv.gz: The first column is the date (JST), the second and subsequent columns are the number of tweets for each emotion, and the last column is the number of tweets analyzed for the day. For this analysis, we only used tweets with a value of 1 in the third column of Tweets_YYYY-MM-DD.tsv.gz. We used pymlask (Python implementation of ML-Ask) to estimate the emotion of the tweet.

    Publication

    This data set was created for our study. If you make use of this data set, please cite: Fujio Toriumi, Takeshi Sakaki, Mitsuo Yoshida. Social Emotions Under the Spread of COVID-19 Using Social Media. Transactions of the Japanese Society for Artificial Intelligence (in Japanese). vol.35, no.4, pp.F-K45_1-7, 2020. 鳥海不二夫, 榊剛史, 吉田光男. ソーシャルメディアを用いた新型コロナ禍における感情変化の分析. 人工知能学会論文誌. vol.35, no.4, pp.F-K45_1-7, 2020. https://doi.org/10.1527/tjsai.F-K45

  5. m

    Impact of the COVID-19 Pandemic on Excess Mortality Among U.S. Military...

    • data.mendeley.com
    Updated Apr 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kevin Griffith (2023). Impact of the COVID-19 Pandemic on Excess Mortality Among U.S. Military Veterans [Dataset]. http://doi.org/10.17632/zmj5jr2r69.3
    Explore at:
    Dataset updated
    Apr 21, 2023
    Authors
    Kevin Griffith
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These deidentified datasets have been approved for public release by the VA Boston Healthcare System's Institutional Review Board and may be used without restriction. Please cite one or more of the source articles when using these data:

    Feyman, Y, Auty, SG, Tenso, K, Strombotne, KL, Legler, A, & Griffith, KN. (2022). “County-Level Impact of the COVID-19 Pandemic on Excess Mortality Among U.S. Veterans: A Population-Based Study.” The Lancet Regional Health – Americas 5: 100093.

    Tenso, K, Strombotne, KL, Feyman, Y, Auty, SG, Legler, A, & Griffith KN. (in press). “Excess Mortality at Veterans Health Administration Facilities During the COVID-19 Pandemic.” Medical Care.

    Avila, CJ, Feyman, Y, Auty, SG, Mulugeta, M, Strombotne, KL, Legler, A, & Griffith, KN. (in progress). “Racial and ethnic disparities in excess mortality due to COVID-19 among U.S. veterans.” Health Services Research.

  6. Demographic and clinical characteristics of HS and COVID-19 patients.

    • plos.figshare.com
    xls
    Updated Jun 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maureen Cambier; Monique Henket; Anne Noelle Frix; Stéphanie Gofflot; Marie Thys; Sara Tomasetti; Anna Peired; Ingrid Struman; Anne-Françoise Rousseau; Benoît Misset; Gilles Darcis; Michel Moutschen; Renaud Louis; Makon-Sébastien Njock; Etienne Cavalier; Julien Guiot (2023). Demographic and clinical characteristics of HS and COVID-19 patients. [Dataset]. http://doi.org/10.1371/journal.pone.0273107.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 20, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Maureen Cambier; Monique Henket; Anne Noelle Frix; Stéphanie Gofflot; Marie Thys; Sara Tomasetti; Anna Peired; Ingrid Struman; Anne-Françoise Rousseau; Benoît Misset; Gilles Darcis; Michel Moutschen; Renaud Louis; Makon-Sébastien Njock; Etienne Cavalier; Julien Guiot
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Demographic and clinical characteristics of HS and COVID-19 patients.

  7. f

    DataSheet_1_Lower gut abundance of Eubacterium rectale is linked to COVID-19...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Sep 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chan, Francis K. L.; Wu, William K. K.; Liu, Yingzhi; Zhang, Lin; Chan, Matthew T. V.; Ng, Siew C. (2023). DataSheet_1_Lower gut abundance of Eubacterium rectale is linked to COVID-19 mortality.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000994905
    Explore at:
    Dataset updated
    Sep 6, 2023
    Authors
    Chan, Francis K. L.; Wu, William K. K.; Liu, Yingzhi; Zhang, Lin; Chan, Matthew T. V.; Ng, Siew C.
    Description

    IntroductionEmerging preclinical and clinical studies suggest that altered gut microbiome composition and functions are associated with coronavirus 2019 (COVID- 19) severity and its long-term complications. We hypothesize that COVID-19 outcome is associated with gut microbiome status in population-based settings.MethodsGut metagenomic data of the adult population consisting of 2871 subjects from 16 countries were obtained from ExperimentHub through R, while the dynamic death data of COVID-19 patients between January 22, 2020 and December 8, 2020 in each country was acquired from Johns Hopkins Coronavirus Resource Center. An adjusted stable mortality rate (SMR) was used to represent these countries’ mortality and correlated with the mean relative abundance (mRA) of healthy adult gut microbiome species.ResultsAfter excluding bacterial species with low prevalence (prevalence <0.2 in the included countries), the β-diversity was significantly higher in the countries with high SMR when compared with those with median or low SMR (p <0.001). We then identified the mRA of two butyrate producers, Eubacterium rectale and Roseburia intestinalis, that were negatively correlated with SMR during the study period. And the reduction of these species was associated with severer COVID-19 manifestation.ConclusionPopulation-based microbiome signatures with the stable mortality rate of COVID-19 in different countries suggest that altered gut microbiome composition and functions are associated with mortality of COVID-19.

  8. COVID index in 2020 and 2021.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Rahim Isnain; Nazri Che Dom; Samsuri Abdullah; Nopadol Precha; Hasber Salim (2023). COVID index in 2020 and 2021. [Dataset]. http://doi.org/10.1371/journal.pone.0275754.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Abdul Rahim Isnain; Nazri Che Dom; Samsuri Abdullah; Nopadol Precha; Hasber Salim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID index in 2020 and 2021.

  9. t

    BIOGRID CURATED DATA FOR PUBLICATION: Severe acute respiratory syndrome...

    • thebiogrid.org
    zip
    Updated Apr 23, 2009
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BioGRID Project (2009). BIOGRID CURATED DATA FOR PUBLICATION: Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. [Dataset]. https://thebiogrid.org/232263/publication/severe-acute-respiratory-syndrome-coronavirus-m-protein-inhibits-type-i-interferon-production-by-impeding-the-formation-of-traf3tanktbk1ikkepsilon-complex.html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 23, 2009
    Dataset authored and provided by
    BioGRID Project
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Protein-Protein, Genetic, and Chemical Interactions for Siu KL (2009):Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex. curated by BioGRID (https://thebiogrid.org); ABSTRACT: Severe acute respiratory syndrome (SARS) coronavirus is highly pathogenic in humans and evades innate immunity at multiple levels. It has evolved various strategies to counteract the production and action of type I interferons, which mobilize the front-line defense against viral infection. In this study we demonstrate that SARS coronavirus M protein inhibits gene transcription of type I interferons. M protein potently antagonizes the activation of interferon-stimulated response element-dependent transcription by double-stranded RNA, RIG-I, MDA5, TBK1, IKKepsilon, and virus-induced signaling adaptor (VISA) but has no influence on the transcriptional activity of this element when IRF3 or IRF7 is overexpressed. M protein physically associates with RIG-I, TBK1, IKKepsilon, and TRAF3 and likely sequesters some of them in membrane-associated cytoplasmic compartments. Consequently, the expression of M protein prevents the formation of TRAF3.TANK.TBK1/IKKepsilon complex and thereby inhibits TBK1/IKKepsilon-dependent activation of IRF3/IRF7 transcription factors. Taken together, our findings reveal a new mechanism by which SARS coronavirus circumvents the production of type I interferons.

  10. f

    Showing the Study design and pre-pandemic and COVID-19 survey dates for each...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moltrecht, Bettina; Shaw, Richard J.; Di Gessa, Giorgio; Katikireddi, Srinivasa Vittal; Chaturvedi, Nishi; Ploubidis, George B.; Wels, Jacques; Bowyer, Ruth C. E.; Demou, Evangelia; Silverwood, Richard J.; Rhead, Rebecca; Zhu, Jingmin; Green, Michael J.; Pattaro, Serena; Hamilton, Olivia K. L.; Greaves, Felix; Boyd, Andy; Zaninotto, Paola (2025). Showing the Study design and pre-pandemic and COVID-19 survey dates for each of the longitudinal population studies. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002056490
    Explore at:
    Dataset updated
    Apr 9, 2025
    Authors
    Moltrecht, Bettina; Shaw, Richard J.; Di Gessa, Giorgio; Katikireddi, Srinivasa Vittal; Chaturvedi, Nishi; Ploubidis, George B.; Wels, Jacques; Bowyer, Ruth C. E.; Demou, Evangelia; Silverwood, Richard J.; Rhead, Rebecca; Zhu, Jingmin; Green, Michael J.; Pattaro, Serena; Hamilton, Olivia K. L.; Greaves, Felix; Boyd, Andy; Zaninotto, Paola
    Description

    Showing the Study design and pre-pandemic and COVID-19 survey dates for each of the longitudinal population studies.

  11. f

    ICD-codes for individual diseases.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jylhävä, Juulia; Hägg, Sara; Annetorp, Martin; Mak, Jonathan K. L.; Eriksdotter, Maria; Religa, Dorota; Hong, Xu; Kananen, Laura (2023). ICD-codes for individual diseases. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000980253
    Explore at:
    Dataset updated
    Mar 22, 2023
    Authors
    Jylhävä, Juulia; Hägg, Sara; Annetorp, Martin; Mak, Jonathan K. L.; Eriksdotter, Maria; Religa, Dorota; Hong, Xu; Kananen, Laura
    Description

    ObjectiveTo analyse if the health progression of geriatric Covid-19 survivors three months after an acute Covid-19 infection was worse than in other geriatric patients. Specifically, we wanted to see if we could see distinct health profiles in the flow of re-admitted Covid-19 patients compared to re-admitted non-Covid-19 controls.DesignMatched cohort study.Setting and participantsElectronic medical records of geriatric patients hospitalised in geriatric clinics in Stockholm, Sweden, between March 2020 and January 2022. Patients readmitted three months after initial admission were selected for the analysis and Covid-19 survivors (n = 895) were compared to age-sex-Charlson comorbidity index (CCI)-matched non-Covid-19 controls (n = 2685).MethodsWe assessed using binary logistic and Cox regression if a previous Covid-19 infection could be a risk factor for worse health progression indicated by the CCI, hospital frailty risk score (HFRS), mortality and specific comorbidities.ResultsThe patients were mostly older than 75 years and, already at baseline, had typically multiple comorbidities. The Covid-19 patients with readmission had mostly had their acute-phase infection in the 1st or 2nd pandemic waves before the vaccinations. The Covid-19 patients did not have worse health after three months compared to the matched controls according to the CCI (odds ratio, OR[95% confidence interval, CI] = 1.12[0.94–1.34]), HFRS (OR[95%CI] = 1.05[0.87–1.26]), 6-months (hazard ratio, HR[95%CI] = 1.04[0.70–1.52]) and 1-year-mortality risk (HR[95%CI] = 0.89[0.71–1.10]), adjusted for age, sex and health at baseline (the CCI and HFRS).Conclusions and implicationsThe overall health progression of re-hospitalized geriatric Covid-19 survivors did not differ dramatically from other re-hospitalized geriatric patients with similar age, sex and health at baseline. Our results emphasize that Covid-19 was especially detrimental for geriatric patients in the acute-phase, but not in the later phase. Further studies including post-vaccination samples are needed.

  12. b

    Coronavirus (COVID-19): SARS-CoV-2 im Abwasser und positiv auf SARS-CoV-2...

    • data.bs.ch
    • data.europa.eu
    • +1more
    csv, excel, json
    Updated Nov 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Coronavirus (COVID-19): SARS-CoV-2 im Abwasser und positiv auf SARS-CoV-2 getestete Personen [Dataset]. https://data.bs.ch/explore/dataset/100187/
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Nov 3, 2025
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    FigurDer Datensatz zeigt den 7-Tage-Median der RNA-Kopien des angegebenen Virus jeweils pro Tag und 100‘000 Personen im Abwasser der Abwasserreinigungs-Anlage (ARA) Basel sowie den 7-Tage-Median der entsprechenden Fallzahlen. Der Datensatz wird i.d.R. jeweils dienstags mit den Daten bis vorangegangenem Sonntag aktualisiert. In einzelnen Wochen kann es zu Verschiebungen kommen.MessungDie ProRheno AG (Betreiber der ARA Basel) entnimmt jeweils eine 24h-Probe des Rohabwassers, welche durch das Kantonale Laboratorium Basel-Stadt (KL BS) auf RNA der angegebenen Viren untersucht wird. Die Messmethodik wurde dabei seit Beginn des Monitorings nicht verändert: siehe Publikation https://smw.ch/index.php/smw/article/view/3226. Die Plausibilität der Werte wird laufend anhand interner Qualitätsparameter überprüft. Das Untersuchungsgebiet umfasst das Einzugsgebiet der ARA Basel, welches sich hauptsächlich aus dem Kanton Basel-Stadt sowie den Gemeinden Allschwil, Binningen, Birsfelden, Bottmingen, Oberwil und Schönenbuch (alle Kanton Baselland) zusammensetzt. Bis Ende Juni 2023 wurden die Messwerte des KL BS auch auf dem Abwasser-Dashboard des BAG Covid-⁠19 Schweiz | Coronavirus | Dashboard (https://www.covid19.admin.ch/de/epidemiologic/waste-water?wasteWaterFacility=270101) dargestellt. Ab Juli 2023 werden auf dieser Seite die Messwerte der EAWAG SARS-CoV2 im Abwasser - Eawag (https://www.eawag.ch/de/abteilung/sww/projekte/sars-cov2-im-abwasser/) publiziert, welche ebenfalls das Rohabwasser der ARA Basel untersucht. Die vom KL BS und der EAWAG verwendeten Untersuchungsmethoden sind sehr ähnlich aber nicht identisch. Aus diesem Grund kann es zu Abweichungen kommen. Die Messungen werden unabhängig von der EAWAG durch das KL BS weitergeführt, um zeitnähere Messwerte, mit zusätzlichen Normierungsfaktoren und die Flexibilität zur Integration weiterer Analyte zu erhalten.Hinweis: Die ursprünglich dargestellten Werte vom 22.03. bis 01.10.2023 mussten aufgrund einer falschen Einstellung in der Messgerätesoftware, die Einfluss auf die RNA-Quantifizierung hat, nach unten korrigiert werden und sind nun korrekt dargestellt.FallzahlenDie Fallzahlen entsprechen der Anzahl der bestätigten und dem Kanton gemeldeten Fälle der dargestellten Infektionen im Einzugsgebiet der ARA Basel.Interpretation der KurvenBeim Monitoring von Viren im Abwasser geht es in erster Linie darum, Trends zu erkennen (insbesondere natürlich die Zunahme eines zirkulierenden Virus). Es ist nicht möglich, daraus eine bestimmte Fallzahl oder den Schweregrad einer Infektion abzuleiten. Ein Vergleich des Kurvenausschlags (Höhe der Peaks) zu verschiedenen Zeitpunkten ist kaum möglich, da z.B. unterschiedliche Virusvarianten zu unterschiedlichen Virusmengen pro Fall führen. Unterschiedliche Virusvarianten können auch die Symptomatik beeinflussen, so dass z.B. Infektionen bei Menschen spurlos verlaufen, aber dennoch Viren ins Abwasser abgegeben werden.

  13. Covid index categories.

    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Rahim Isnain; Nazri Che Dom; Samsuri Abdullah; Nopadol Precha; Hasber Salim (2023). Covid index categories. [Dataset]. http://doi.org/10.1371/journal.pone.0275754.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Abdul Rahim Isnain; Nazri Che Dom; Samsuri Abdullah; Nopadol Precha; Hasber Salim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Covid index categories.

  14. Table 1 - Does the IL-6/KL-6 ratio distinguish different phenotypes in...

    • plos.figshare.com
    xls
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Partouche; Myriam Maumy; Thien-Nga Chamaraux-Tran; Frederic Bertrand; Francis Schneider; Nicolas Meyer; Morgane Solis; Samira Fafi-Kremer; Eric Noll; Julien Pottecher (2025). Table 1 - Does the IL-6/KL-6 ratio distinguish different phenotypes in COVID-19 Acute Respiratory Distress Syndrome? An observational study stemmed from prospectively derived clinical, biological, and computed tomographic data [Dataset]. http://doi.org/10.1371/journal.pone.0321533.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Nicolas Partouche; Myriam Maumy; Thien-Nga Chamaraux-Tran; Frederic Bertrand; Francis Schneider; Nicolas Meyer; Morgane Solis; Samira Fafi-Kremer; Eric Noll; Julien Pottecher
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Characteristics of the study population. Categorical variables were described using frequency (n) and proportion (%). Quantitative variables were described using medians (m) and interquartile range (IQR).

  15. m

    COVID-19

    • data.mendeley.com
    Updated Jun 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wooi Chen Khoo (2023). COVID-19 [Dataset]. http://doi.org/10.17632/h3z2k77t5m.1
    Explore at:
    Dataset updated
    Jun 29, 2023
    Authors
    Wooi Chen Khoo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Weekday COVI-19 confirmed cases recorded from 1 March 2021 to 22 October 2022 for states of Selangor, KL, Penang, Johor and Sarawak.

  16. f

    Adjusted1 associations between self-reported COVID-19 status and economic...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greaves, Felix; Demou, Evangelia; Chaturvedi, Nishi; Zaninotto, Paola; Pattaro, Serena; Shaw, Richard J.; Wels, Jacques; Zhu, Jingmin; Rhead, Rebecca; Katikireddi, Srinivasa Vittal; Green, Michael J.; Ploubidis, George B.; Boyd, Andy; Silverwood, Richard J.; Moltrecht, Bettina; Di Gessa, Giorgio; Hamilton, Olivia K. L.; Bowyer, Ruth C. E. (2025). Adjusted1 associations between self-reported COVID-19 status and economic stratified by age, sex, NS-SEC, self-reported health and keyworker status using the UKDS full sample. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0002056502
    Explore at:
    Dataset updated
    Apr 9, 2025
    Authors
    Greaves, Felix; Demou, Evangelia; Chaturvedi, Nishi; Zaninotto, Paola; Pattaro, Serena; Shaw, Richard J.; Wels, Jacques; Zhu, Jingmin; Rhead, Rebecca; Katikireddi, Srinivasa Vittal; Green, Michael J.; Ploubidis, George B.; Boyd, Andy; Silverwood, Richard J.; Moltrecht, Bettina; Di Gessa, Giorgio; Hamilton, Olivia K. L.; Bowyer, Ruth C. E.
    Description

    Adjusted1 associations between self-reported COVID-19 status and economic stratified by age, sex, NS-SEC, self-reported health and keyworker status using the UKDS full sample.

  17. COVID index comparison between 2020 and 2021.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdul Rahim Isnain; Nazri Che Dom; Samsuri Abdullah; Nopadol Precha; Hasber Salim (2023). COVID index comparison between 2020 and 2021. [Dataset]. http://doi.org/10.1371/journal.pone.0275754.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Abdul Rahim Isnain; Nazri Che Dom; Samsuri Abdullah; Nopadol Precha; Hasber Salim
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    COVID index comparison between 2020 and 2021.

  18. e

    Covid-19-karakteristika per fall i hela landet

    • data.europa.eu
    Updated Jan 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Covid-19-karakteristika per fall i hela landet [Dataset]. https://data.europa.eu/data/datasets/2c4357c8-76e4-4662-9574-1deb8a73f724?locale=sv
    Explore at:
    Dataset updated
    Jan 20, 2022
    Description

    Ärende: Covid-19_casus_rural Tillgängliga format:.csv och json

    Källsystem: Osiris allmänna infektionssjukdomar (AIZ) Filbeskrivning:

    Denna fil innehåller följande egenskaper per positivt fall i Nederländerna: Datum för statistik, åldersgrupp, kön, död, dödsvecka, provins, rapportering av GGD

    Filen är uppbyggd enligt följande: Ett register för varje laboratorium, bekräftad covid-19-patient i Nederländerna, sedan den första covid-19-anmälan i Nederländerna den 27 februari 2020 (statistiskt datum kan vara tidigare).Filen uppdateras dagligen kl. 16.00, baserat på de uppgifter som registrerats i det nationella systemet för anmälningspliktiga sjukdomar (Osiris AIZ) kl. 10.00 samma dag.

    Beskrivning av variabler:

    Version: Versionsnummer för datauppsättningen. Om innehållet i datasetet ändras strukturellt (dvs. inte den dagliga uppdateringen eller en korrigering på rekordnivå) kommer versionsnumret att justeras (+ 1) och även motsvarande metadata i RIVMdata (https://data.rivm.nl).

    Version 2 uppdatering (20 januari 2022):

    — I version 2 av denna datauppsättning är variabeln ’hospital_admission’ inte längre tillgänglig. För antalet sjukhusvistelser hänvisas till Stichting NICE:s registrerade sjukhusvistelser (https://data.rivm.nl/covid-19/COVID-19_ziekenhuisopnames.html).

    Date_file: Datum och tidpunkt för offentliggörande av uppgifterna av RIVM

    Datum_statistik: Datum för statistik. första sjukdomsdagen, om okänd, datum för laboratoriepositivt, om inte känt, datum för anmälan till GGD (format: åååå-mm-dd)

    Date_statistics_type: Datumtyp tillgänglig för variabeln ”Statistiskt datum”, där:

    Doo = datum för sjukdomsstart: Första sjukdomsdagen enligt GGD:s rapport. Observera: det är inte alltid känt om denna första dag av sjukdom verkligen påverkade covid-19.

    DPL = datum för det första positiva laboratorieresultatet: Datum för det (första) positiva laboratorieresultatet.

    Don = datum för anmälan: Datum då GGD mottog anmälan.

    Åldersgrupp: Åldersgrupp på livstid. 0–9, 10–19,..., 90+; vid dödsfall <50, 50–59, 60–69, 70–79, 80–89, 90+, Okänt = Okänt

    Kön: Kön, Okänd = okänd, Man = Man, Kvinna = Kvinna

    Provins: Provinsens namn (baserat på patientens vistelseort)

    Avliden: Jag är död. Okänd = Okänd, Ja = Ja, Nej = Nej

    Dödsvecka: En veckas död. ÅÅÅÅMM enligt ISO-veckan (börjar från måndag till söndag)

    Municipal_health_service: GGD som ringde.

  19. o

    Abwassermonitoring: Influenza und RSV

    • basel-stadt.opendatasoft.com
    • data.bs.ch
    • +1more
    csv, excel, json
    Updated Dec 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Abwassermonitoring: Influenza und RSV [Dataset]. https://basel-stadt.opendatasoft.com/explore/dataset/100302/api/?flg=fr-ch
    Explore at:
    json, csv, excelAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    FigurDer Datensatz zeigt den 7-Tage-Median der RNA-Kopien des angegebenen Virus jeweils pro Tag und 100‘000 Personen im Abwasser der Abwasserreinigungs-Anlage (ARA) Basel sowie den 7-Tage-Median der entsprechenden Fallzahlen. Der Datensatz wird i.d.R. jeweils dienstags mit den Daten bis vorangegangenem Sonntag aktualisiert. In einzelnen Wochen kann es zu Verschiebungen kommen.MessungDie ProRheno AG (Betreiber der ARA Basel) entnimmt jeweils eine 24h-Probe des Rohabwassers, welche durch das Kantonale Laboratorium Basel-Stadt (KL BS) auf RNA der angegebenen Viren untersucht wird. Die Messmethodik wurde dabei seit Beginn des Monitorings nicht verändert: siehe Publikation https://smw.ch/index.php/smw/article/view/3226. Die Plausibilität der Werte wird laufend anhand interner Qualitätsparameter überprüft. Das Untersuchungsgebiet umfasst das Einzugsgebiet der ARA Basel, welches sich hauptsächlich aus dem Kanton Basel-Stadt sowie den Gemeinden Allschwil, Binningen, Birsfelden, Bottmingen, Oberwil und Schönenbuch (alle Kanton Baselland) zusammensetzt. Bis Ende Juni 2023 wurden die Messwerte des KL BS auch auf dem Abwasser-Dashboard des BAG Covid-⁠19 Schweiz | Coronavirus | Dashboard (https://www.covid19.admin.ch/de/epidemiologic/waste-water?wasteWaterFacility=270101) dargestellt. Ab Juli 2023 werden auf dieser Seite die Messwerte der EAWAG SARS-CoV2 im Abwasser - Eawag (https://www.eawag.ch/de/abteilung/sww/projekte/sars-cov2-im-abwasser/) publiziert, welche ebenfalls das Rohabwasser der ARA Basel untersucht. Die vom KL BS und der EAWAG verwendeten Untersuchungsmethoden sind sehr ähnlich aber nicht identisch.In den Zeiträumen 29.4. bis 1.8.2022 (ausser 1.6.2022 und 5.6.2022) und 30.5.2023 bis 3.9.2023 wurden keine Abwasserproben auf Influenza und RSV untersucht.Fallzahlen Die Fallzahlen entsprechen der Anzahl der bestätigten und dem Kanton gemeldeten Fälle der dargestellten Infektionen im Einzugsgebiet der ARA Basel.Interpretation der KurvenBeim Monitoring von Viren im Abwasser geht es in erster Linie darum, Trends zu erkennen (insbesondere natürlich die Zunahme eines zirkulierenden Virus). Es ist nicht möglich, daraus eine bestimmte Fallzahl oder den Schweregrad einer Infektion abzuleiten. Ein Vergleich des Kurvenausschlags (Höhe der Peaks) zu verschiedenen Zeitpunkten ist kaum möglich, da z.B. unterschiedliche Virusvarianten zu unterschiedlichen Virusmengen pro Fall führen. Unterschiedliche Virusvarianten können auch die Symptomatik beeinflussen, so dass z.B. Infektionen bei Menschen spurlos verlaufen, aber dennoch Viren ins Abwasser abgegeben werden.

    Hier gehts zum Dashboard
    
  20. Additional file 8 of Temporal landscape of human gut RNA and DNA virome in...

    • springernature.figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Feb 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tao Zuo; Qin Liu; Fen Zhang; Yun Kit Yeoh; Yating Wan; Hui Zhan; Grace C. Y. Lui; Zigui Chen; Amy Y. L. Li; Chun Pan Cheung; Nan Chen; Wenqi Lv; Rita W. Y. Ng; Eugene Y. K. Tso; Kitty S. C. Fung; Veronica Chan; Lowell Ling; Gavin Joynt; David S. C. Hui; Francis K. L. Chan; Paul K. S. Chan; Siew C. Ng (2024). Additional file 8 of Temporal landscape of human gut RNA and DNA virome in SARS-CoV-2 infection and severity [Dataset]. http://doi.org/10.6084/m9.figshare.14418186.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 15, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Tao Zuo; Qin Liu; Fen Zhang; Yun Kit Yeoh; Yating Wan; Hui Zhan; Grace C. Y. Lui; Zigui Chen; Amy Y. L. Li; Chun Pan Cheung; Nan Chen; Wenqi Lv; Rita W. Y. Ng; Eugene Y. K. Tso; Kitty S. C. Fung; Veronica Chan; Lowell Ling; Gavin Joynt; David S. C. Hui; Francis K. L. Chan; Paul K. S. Chan; Siew C. Ng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 7: Supplementary Table 1. Subject characteristics and blood measurements.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, COVID-19 cases per 100,000 people Malaysia 2023, by state [Dataset]. https://www.statista.com/statistics/1107426/malaysia-covid-19-confirmed-cases-by-state/
Organization logo

COVID-19 cases per 100,000 people Malaysia 2023, by state

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
Malaysia
Description

As of November 4, 2023, Malaysian states of Putrajaya and Kuala Lumpur had respectively around 36.1 and 30.6 coronavirus (COVID-19) confirmed cases per 100,000 people, the highest in the country. Malaysia is experiencing a decrease in cases, although the country still expecting a rise due to the highly contagious variant of Omicron.

Malaysia is currently one out of more than 200 countries and territories battling with the novel coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

Search
Clear search
Close search
Google apps
Main menu