Facebook
TwitterGIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.
Facebook
TwitterThe Best Data Layer (BDL) is an imagery base layer containing the 'best available' imagery from the Alaska Statewide Digital Mapping Initiative archive. The layer is made up of a variety of datasets with a scale dependent visibility for what data is presented The BDL is available in a variety of formats: WMS: http://wms.alaskamapped.org/bdl ESRI users can easily integrate into their ArcGIS environment using the ESRI layer files KML: http://kml.gina.alaska.edu/kml/bdl.kml Google Maps, Bing, ESRI, and Open Layers tile formats (plus more)
Facebook
TwitterDisplays outlines depicting the current boundaries of WA State Parks lands. This KML file contains a network link to another KML file that is stored on the WA State Parks website. In this way, using this KML file will always display up-to-date boundaries, eliminating the need to download updated KML files.This data layer depicts the current boundaries for WA State Parks, and properties owned by WSPRC (Washington State Parks and Recreation Commission). Property types include State Park, State Park Conservation Area, State Park Heritage Site, State Park Property, State Park Trail, Historical State Park, and Marine State Park. Data is revised monthly or more frequently; however, errors and inaccuracies may exist in the data. This layer is for informational purposes only and is not intended to be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries.For attribute descriptions, see the metadata for the GIS data layer "ParkBoundaries", available online at http://geo.wa.gov/datasets/wa-stateparks::parks-park-boundaries .To download this and other data from Washington State Parks, go to geo.wa.gov and search for "wsprc" (Washington State Parks and Recreation Commission).
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Urban Redevelopment Authority. For more information, visit https://data.gov.sg/datasets/d_ef5397203b8e2fcf52a01f3da6554054/view
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The NOAFAULTs database of active faults was published in 2013 (versions 1.0 & 1.1). In this datase we present the upgrades comprising the newer version of the database (version 2.1). NOAFAULTs was created towards compiling a digital database of fault geometry and additional attributes (character of faulting, past seismicity etc) primarily to support seismicity monitoring at the National Observatory of Athens (NOA). It has been constructed from published fault maps in peer-reviewed journals since 1972 while the number of the scientific papers that were included is 110. The standard commercial software ARC GIS has been used to design and populate the database. In the new version, details on fault geometry, such as the strike, the dip-angle and the dip direction, and kinematics for each individual fault are included. For well-studied faults, information about the slip rate or the creep or the co-seismic slip is reported. The fault layer was produced by on-screen digitization and is available to the scientific community in ESRI shapefile (SHP), KML/KMZ and TXT formats in WGS84 projection. In this version of the database, we continue to focus on the active faults of the upper (Aegean + Eurasian) plate and the back-arc region of the Hellenic Arc, in general. A number of 2437 faults are now included.
Facebook
TwitterThe Unpublished Digital Geologic Map of Chickasaw National Recreation Area and Vicinity, Oklahoma is composed of GIS data layers and GIS tables in a 10.0 file geodatabase (chic_geology.gdb), a 10.0 ArcMap (.MXD) map document (chic_geology.mxd), and individual 10.0 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (chic_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (chic_gis_readme.pdf). Please read the chic_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.0 shapefile format contact Stephanie O’Meara (stephanie_o’meara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (chic_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/chic/chic_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 14N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Chickasaw National Recreation Area.
Facebook
TwitterThe 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. This file depicts the shape of the United States clipped back to a generalized coastline. This nation layer covers the extent of the fifty states, the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) when scale appropriate.
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Urban Redevelopment Authority. For more information, visit https://data.gov.sg/datasets/d_38231948814802f2f4368d95c6fdf571/view
Facebook
TwitterThis dataset contains information on the number and distribution of recreational fishing trips off of the coast of Southern Florida.
Facebook
TwitterThe Digital Geologic-GIS Map of Johnstown Flood National Memorial and portions of Allegheny Portage Railroad National Historic Site, Pennsylvania is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jofl_alpo_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jofl_alpo_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jofl_alpo_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (alpo_jofl_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (alpo_jofl_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jofl_alpo_geology_metadata_faq.pdf). Please read the alpo_jofl_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Pennsylvania Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jofl_alpo_geology_metadata.txt or jofl_alpo_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The NOAFAULTs database of active faults of Greece was first published in 2013 (versions 1.0 & 1.1; http://dx.doi.org/10.12681/bgsg.11079). The version 2.1 was published in 2018 http://doi.org/10.5281/zenodo.3483136). Version 3.0 was published in 2020 http://doi.org/10.5281/zenodo.4304613 NOAFAULTs was created towards compiling a digital database of fault geometry and additional attributes (kinematics, slip rate, associated seismicity etc.) primarily to support seismicity monitoring at the National Observatory of Athens (NOA). It has been constructed from published fault maps in peer-reviewed journals since 1972 while the number of the scientific papers that have contributed with fault data in version 4.0 is 127. The standard commercial software ARCGIS has been used to design and populate the database. The fault layer was produced by on-screen digitization of fault traces at the original map-scale and is available through our web portal application https://arcg.is/04Haer supported by ESRI. In this version, a number of 2751 active faults are included. 93% of the active faults are normal faults, 4% are strike-slip faults and only 3% represent the reverse faults. Also, reliable data on slip rates are available for 106 faults. Data on instrumental and historical seismicity are linked to 171 and 130 active faults, respectively. In addition, a) surface-rupturing geological data and b) data on the proximity of epicentres of strong seismic events to the traces of active faults allows the identification of 101 rupturing faults (seismic faults) that included in this version of the database. The NOAFAULTs database shows that nearly 52% of its active faults imply high seismic risk level in the broader area of Greece. These active faults can generate surface faulting or strong ground motions that can cause serious damage to buildings and infrastructures and therefore represent a significant hazard, particularly in the densely populated and industrialized areas of Greece.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the recreation opportunity information that the Forest Service collects through the Recreation Portal and shares with the public on https://www.recreation.gov, the Forest Service World Wide Web pages (https://www.fs.usda.gov/) and the Interactive Visitor Map. This recreation data contains detailed descriptions of recreational sites, areas, activities & facilities. This published dataset consists of one point feature class for recreational areas, one spatial view and three related tables such as activities, facilities & rec area advisories. The purpose of each related table is described belowRECAREAACTIVITIES: This related table contains information about the activities that are associated with the rec area.RECAREAFACILITIES: This related table contains information about the amenities that are associated with the rec area.RECAREAADVISORIES: This table contains events, news, alerts and warnings that are associated with the rec area.RECAREAACTIVITIES_V: This spatial view/feature class is generated by joining the RECAREAACTIVITIES table to the RECREATION OPPORTUNITIES Feature Class. Please note that the RECAREAID is the unique identifier present in point feature class and in the related tables as well. The RECAREAID is used as foreign key to access relate records.This published data is updated nightly from an XML feed maintained by the CIO Rec Portal team. This data is intended for public use and distribution. MetadataThis record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.
Facebook
TwitterThe Digital Geologic-GIS Map of Fort Davis National Historic Site and Vicinity, Texas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (foda_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (foda_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (foda_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (foda_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (foda_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (foda_geology_metadata_faq.pdf). Please read the foda_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Texas Bureau of Economic Geology, University of Texas at Austin. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (foda_geology_metadata.txt or foda_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterThe Digital Geologic-GIS Map of the Wetlands Acadian Cultural Center Unit, Jean Lafitte National Historical Park and Preserve, Louisiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (weac_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (weac_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (weac_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (jela_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jela_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (weac_geology_metadata_faq.pdf). Please read the jela_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Louisiana Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (weac_geology_metadata.txt or weac_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Urban Redevelopment Authority. For more information, visit https://data.gov.sg/datasets/d_2901b6d6ffe5c93679ab7bf04797b155/view
Facebook
TwitterThe Digital Geologic-GIS Map of Navajo National Monument and Vicinity, Arizona is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (nava_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (nava_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (nava_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (nava_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (nava_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (nava_geology_metadata_faq.pdf). Please read the nava_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (nava_geology_metadata.txt or nava_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:250,000 and United States National Map Accuracy Standards features are within (horizontally) 127 meters or 416.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Facebook
TwitterGulf of Mexico Region (defined by GCOOS). The shoreline is based on a Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG).
The exported KML layer does not preserve the features of the hosted feature layer if it contains multipart features. This is a known issuehttps://support.esri.com/en/technical-article/000019351Please download shapefile/filegeodatabase and generate KML using 'Layer to KML' or other tools as needed.
Facebook
TwitterThe Unpublished Digital Geologic Map of Colonial National Historical Park and Vicinity, Virginia is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (colo_geology.gdb), a 10.1 ArcMap (.MXD) map document (colo_geology.mxd), individual 10.1 layer (.LYR) files for each GIS data layer, an ancillary map information (.PDF) document (colo_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.TXT) and FAQ (.HTML) formats, and a GIS readme file (colo_gis_readme.pdf). Please read the colo_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O’Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Virginia Division of Geology and Mineral Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (colo_metadata_faq.html; available at http://nrdata.nps.gov/geology/gri_data/gis/colo/colo_metadata_faq.html). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.2. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 18N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Colonial National Historical Park.
Facebook
Twitterhttps://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Urban Redevelopment Authority. For more information, visit https://data.gov.sg/datasets/d_1de7aacae7a8cdd5d61b6d879f951959/view
Facebook
TwitterGIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.