77 datasets found
  1. B

    Shapefile to DJI Pilot KML conversion tool

    • borealisdata.ca
    • search.dataone.org
    Updated Jan 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Cadieux (2023). Shapefile to DJI Pilot KML conversion tool [Dataset]. http://doi.org/10.5683/SP3/W1QMQ9
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 30, 2023
    Dataset provided by
    Borealis
    Authors
    Nicolas Cadieux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.

  2. B

    GIS2DJI: GIS file to DJI Pilot kml conversion tool

    • borealisdata.ca
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Cadieux (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. http://doi.org/10.5683/SP3/AFPMUJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Borealis
    Authors
    Nicolas Cadieux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

  3. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Liu, Jie
    Zhu, Guang-Fu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  4. c

    ckanext-geopusher - Extensions - CKAN Ecosystem Catalog

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-geopusher - Extensions - CKAN Ecosystem Catalog [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-geopusher
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The geopusher extension for CKAN automatically converts KML and Shapefile resources uploaded to a CKAN instance into GeoJSON resources. This conversion process allows users to easily access and utilize geospatial data in a modern, web-friendly format without needing to manually reformat the files. The extension operates as a celery task, meaning it can be configured to run automatically when resources are added or updated within CKAN. Key Features: Automatic GeoJSON Conversion: Converts KML and Shapefile resource uploads into GeoJSON format, increasing data usability and accessibility. Celery Task Integration: Operates as a Celery task, enabling asynchronous and automatic conversion upon resource creation or update and allowing other asynchronous operations to be processed at defined times. Batch Conversion: Provides functionality to convert all Shapefile resources on a CKAN instance or a specific subset of datasets at once. Technical Integration: The geopusher extension integrates with CKAN by listening to resource update events. The celery daemon needs to be running for automatic conversion to occur. The extension requires GDAL to be installed on the server to handle the geospatial data conversion. The README shows that the installation and usage involve updating the CKAN configuration Benefits & Impact: By automatically converting geospatial data into GeoJSON, the geopusher extension simplifies the use of KML and Shapefile data within web applications. This automation reduces manual effort, increases accessibility, and helps users to more readily integrate CKAN data into mapping and analysis tools. The automatic conversion ensures that when geospatial data is uploaded to a CKAN repository, users are able to immediately access the data in a suitable format for a wide range of web-based mapping applications, supporting improved data dissemination and collaboration.

  5. d

    GIS Data | Global Geospatial data | Postal/Administrative boundaries |...

    • datarade.ai
    .json, .xml
    Updated Oct 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). GIS Data | Global Geospatial data | Postal/Administrative boundaries | Countries, Regions, Cities, Suburbs, and more [Dataset]. https://datarade.ai/data-products/geopostcodes-gis-data-gesopatial-data-postal-administrati-geopostcodes
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Oct 18, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted GIS data cover administrative and postal divisions with up to 6 precision levels: a zip code layer and up to 5 administrative levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (GIS data, Geospatial data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the GIS data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our geospatial data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All GIS data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  6. a

    Data from: Congressional Districts

    • data-usdot.opendata.arcgis.com
    • catalog.data.gov
    • +1more
    Updated Jul 1, 1995
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Transportation: ArcGIS Online (1995). Congressional Districts [Dataset]. https://data-usdot.opendata.arcgis.com/datasets/usdot::congressional-districts/about
    Explore at:
    Dataset updated
    Jul 1, 1995
    Dataset authored and provided by
    U.S. Department of Transportation: ArcGIS Online
    Area covered
    Description

    The 119th Congressional Districts dataset reflects boundaries from January 3rd, 2025 from the United States Census Bureau (USCB), and the attributes are updated every Sunday from the United States House of Representatives and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Information for each member of Congress is appended to the Census Congressional District shapefile using information from the Office of the Clerk, U.S. House of Representatives' website https://clerk.house.gov/xml/lists/MemberData.xml and its corresponding XML file. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. This dataset also includes 9 geographies for non-voting at large delegate districts, resident commissioner districts, and congressional districts that are not defined. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 119th Congress is seated from January 3, 2025 through January 3, 2027. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by May 31, 2024. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529006

  7. d

    Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot...

    • search.dataone.org
    • data.ess-dive.lbl.gov
    • +1more
    Updated Jul 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers (2021). Geospatial Data from the Alpine Treeline Warming Experiment (ATWE) on Niwot Ridge, Colorado, USA [Dataset]. http://doi.org/10.15485/1804896
    Explore at:
    Dataset updated
    Jul 7, 2021
    Dataset provided by
    ESS-DIVE
    Authors
    Fabian Zuest; Cristina Castanha; Nicole Lau; Lara M. Kueppers
    Time period covered
    Jan 1, 2008 - Jan 1, 2012
    Area covered
    Description

    This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.

  8. g

    Sentinel-2 UTM Tiling Grid (ESA) | gimi9.com

    • gimi9.com
    Updated Oct 20, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Sentinel-2 UTM Tiling Grid (ESA) | gimi9.com [Dataset]. https://gimi9.com/dataset/au_sentinel-2-utm-tiling-grid-esa/
    Explore at:
    Dataset updated
    Oct 20, 2020
    Description

    This dataset shows the tiling grid and their IDs for Sentinel 2 satellite imagery. The tiling grid IDs are useful for selecting imagery of an area of interest. Sentinel 2 is an Earth observation satellite developed and operated by the European Space Agency (ESA). Its imagery has 13 bands in the visible, near infrared and short wave infrared part of the spectrum. It has a spatial resolution of 10 m, 20 m and 60 m depending on the spectral band. Sentinel-2 has a 290 km field of view when capturing its imagery. This imagery is then projected on to a UTM grid and made available publicly on 100x100 km2 tiles. Each tile has a unique ID. This ID scheme allows all imagery for a given tile to be located. Provenance: The ESA make the tiling grid available as a KML file (see links). We were, however, unable to convert this KML into a shapefile for deployment on the eAtlas. The shapefile used for this layer was sourced from the Git repository developed by Justin Meyers (https://github.com/justinelliotmeyers/Sentinel-2-Shapefile-Index). Why is this dataset in the eAtlas?: Sentinel 2 imagery is very useful for the studying and mapping of reef systems. Selecting imagery for study often requires knowing what the tile grid IDs are for the area of interest. This dataset is intended as a reference layer. The eAtlas is not a custodian of this dataset and copies of the data should be obtained from the original sources. Data Dictionary: Name: UTM code associated with each tile. For example 55KDV

  9. Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands (NPS, GRD, GRI, VIIS, VIIS digital map) adapted from a U.S. Geological Survey Professional Paper map by Rankin (2002) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-virgin-islands-national-park-virgin-islands-nps-grd-gri-viis-v
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    U.S. Virgin Islands
    Description

    The Unpublished Digital Geologic-GIS Map of Virgin Islands National Park, Virgin Islands is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (viis_geology.gdb), a 10.1 ArcMap (.mxd) map document (viis_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (viis_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (viis_geology_gis_readme.pdf). Please read the viis_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (viis_geology_metadata.txt or viis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, UTM Zone 20N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Virgin Islands National Park.

  10. Open StreetMap data for Berlin

    • data.europa.eu
    • processor1.francecentral.cloudapp.azure.com
    • +1more
    unknown, zip
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    openstreetmap.org (2024). Open StreetMap data for Berlin [Dataset]. https://data.europa.eu/88u/dataset/eecb8237-ccf4-4616-81dc-40189fffb10a
    Explore at:
    unknown, zipAvailable download formats
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    OpenStreetMap//www.openstreetmap.org/
    License

    http://dcat-ap.de/def/licenses/odblhttp://dcat-ap.de/def/licenses/odbl

    Description

    OpenStreetMap is a project launched in 2004 to create a free world map. We collect data on roads, railways, rivers, forests, homes and anything else around the world, commonly seen on maps. Because we collect the data yourself and not distinguish from existing cards, we have all the rights to it. Open StreetMap data may be used free of charge by anyone and further processed at any time. This dataset contains the Berlin section of the Planet File. Other formats such as OSM-XML, shapefiles, SVG, Adobe Illustrator, Garmin GPS, GPX, GML, KML, Manifold GIS, grid graphics can be exported at http://wiki.openstreetmap.org/wiki/Export.

    Open StreetMap-data questions can be discussed here: Http://forum.openstreetmap.org/viewforum.php?id=14

  11. d

    Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  12. i

    localisation Ifremer Sète

    • sextant.ifremer.fr
    Updated May 25, 2011
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ifremer LERLR (2011). localisation Ifremer Sète [Dataset]. https://sextant.ifremer.fr/record/7626897a-5fec-418e-bdbe-204e78bced64/
    Explore at:
    Dataset updated
    May 25, 2011
    Dataset provided by
    ifremer LERLR
    Area covered
    Description

    Emprise du terrain d'Ifremer à Sète. Dessinée à partir de google earth (image satellite de 11/08/2006 tele atlas) Export en kml et conversion en shp à l'aide de l'outil en ligne : http://freegeographytools.com/2009/online-kml-to-shapefile-converter

  13. Unpublished Digital Geologic Map of Glen Canyon National Recreation Area and...

    • catalog.data.gov
    • datadiscoverystudio.org
    • +3more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Unpublished Digital Geologic Map of Glen Canyon National Recreation Area and Vicinity, Utah, and Arizona (NPS, GRD, GRI, GLCA, GLCA digital map) adapted from Utah Geological Survey digital data and map by Willis and Ehler (2011), and Open-File Report map by Doelling and Willis (1999) [Dataset]. https://catalog.data.gov/dataset/unpublished-digital-geologic-map-of-glen-canyon-national-recreation-area-and-vicinity-utah
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Utah
    Description

    The Unpublished Digital Geologic Map of Glen Canyon National Recreation Area and Vicinity, Utah, Arizona is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. These data formats also fully represent all of the features present on a GRI digital map, as well as containing related ancillary information GIS data tables. The data is also available as a 2.2 KMZ/KML file for use in Google Earth. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Utah Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (glca_metadata.xml; available at http://nrdata.nps.gov/glca/nrdata/geology/gis/glca_metadata.xml). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (glca_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 12N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Glen Canyon National Recreation Area, as well as Rainbow Bridge National Monument (RABR), Canyonlands National Park (CANY), Capitol Reef National Park (CARE) and Grand Canyon National Park (GRCA).

  14. TIGER/Line Shapefile, 2020, Nation, U.S., American Indian Tribal...

    • catalog.data.gov
    • datasets.ai
    Updated Nov 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Publisher) (2022). TIGER/Line Shapefile, 2020, Nation, U.S., American Indian Tribal Subdivisions [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-nation-u-s-american-indian-tribal-subdivisions
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. American Indian tribal subdivisions are administrative subdivisions of federally recognized American Indian reservations/off-reservation trust lands or Oklahoma tribal statistical areas (OTSAs). These entities are internal units of self-government and/or administration that serve social, cultural, and/or economic purposes for the American Indian tribe or tribes on the reservations/off-reservation trust lands or OTSAs. The Census Bureau obtains the boundary and attribute information for tribal subdivisions on federally recognized American Indian reservations and off-reservation trust lands from federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey (BAS). For the 2020 Census, the boundaries for tribal subdivisions on OTSAs were also obtained from federally recognized tribal governments through the Participant Statistical Areas Program (PSAP). Note that tribal subdivisions do not exist on all reservations/off-reservation trust lands or OTSAs, rather only where they were submitted to the Census Bureau by the federally recognized tribal government for that area. The boundaries for American Indian tribal subdivisions are as of January 1, 2020, as reported by the federally recognized tribal governments through the Census Bureau's Boundary and Annexation Survey (BAS). The boundaries for tribal subdivisions on OTSAs are those reported as of January 1, 2020 through PSAP.

  15. d

    Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones...

    • datarade.ai
    Updated Jun 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Global Postal Boundaries (880K Polygons) | Global Map Data | GIS-Ready Zones by Country & ZIP [Dataset]. https://datarade.ai/data-products/geopostcodes-boundary-data-global-coverage-880k-polygons-geopostcodes
    Explore at:
    .json, .xml, .geojson, .kmlAvailable download formats
    Dataset updated
    Jun 22, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United States
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover postal divisions for the whole world. The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Boundaries Database (Geospatial data, Map data, Polygon daa)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  16. K

    State of Oregon City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Oregon (2024). State of Oregon City Limits [Dataset]. https://koordinates.com/layer/97237-state-of-oregon-city-limits/
    Explore at:
    kml, geodatabase, dwg, csv, mapinfo tab, shapefile, mapinfo mif, geopackage / sqlite, pdfAvailable download formats
    Dataset updated
    Feb 26, 2024
    Dataset authored and provided by
    State of Oregon
    Area covered
    Description

    Vector polygon map data of city limits from cities across the State of Oregon containing 241 features.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  17. d

    GEODATA TOPO 250K Series 3 online via Interactive Maps

    • datadiscoverystudio.org
    • data.wu.ac.at
    pdf v.unknown
    Updated Jan 1, 2006
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEODATA (2006). GEODATA TOPO 250K Series 3 online via Interactive Maps [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f99ed78831e645eaa43137e543a3c0f6/html
    Explore at:
    pdf v.unknownAvailable download formats
    Dataset updated
    Jan 1, 2006
    Authors
    GEODATA
    Area covered
    Description

    GEODATA TOPO 250K Series 3 is a vector representation of the major features appearing on 1:250,000 scale NATMAP topographic maps and is supplied in various formats over a defined area. It is primarily designed to provide high quality data for mapping and GIS professionals. Data includes powerlines and pipelines and is supplied for commercial GIS and public use in the formats described below. GEODATA TOPO 250K Series 3 is available as a packaged product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in .kml format for use on Google Earth TM Mapping Service. All data is based on GDA94 coordinate system, however .kml format data has been converted to WGS84. Use of GEODATA TOPO 250K Series 3 is subject to a licence, the full terms of which are contained within the package. Interactive Maps, Geoscience Australia`s on-line map download system, delivering free download of seamless data. MapConnect will allow you to select a specific area (subject to parameters) and themes or select individual tiles for download. Data will be available in GML and Shape file formats. Customised 250K GEODATA is available where requirements are not met by the packaged or Interactive Maps options. The price will be determined after assessing your needs - contact the Geoscience Australia Sales Centre. Alternately, we may refer you to a third party supplier. Packaged product formats - Personal geodatabase (Geocat # 63999), Shapefiles (Geocat # 64058), TAB files (Geocat # 64059), KML files for use with Google Earth (Geocat # 65137). Product Specifications Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation Coverage: National (Powerlines not available in South Australia) Currency: Data has a currency of less than five years for any location Coordinates: Geographical Datum: Geocentric Datum of Australia (GDA94) Formats: Personal Geodatabase, ArcView Shapefile and MapInfo TAB Medium: Packaged DVD ROM ($99 per package) or online via Interactive Maps Previous Version: Replaces GEODATA TOPO 250K Series 2

  18. World Transportation

    • wifire-data.sdsc.edu
    csv, esri rest +4
    Updated Jun 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). World Transportation [Dataset]. https://wifire-data.sdsc.edu/dataset/world-transportation
    Explore at:
    geojson, kml, esri rest, csv, zip, htmlAvailable download formats
    Dataset updated
    Jun 9, 2021
    Dataset provided by
    Esrihttp://esri.com/
    Area covered
    World
    Description

    This map presents transportation data, including highways, roads, railroads, and airports for the world.

    The map was developed by Esri using Esri highway data; Garmin basemap layers; HERE street data for North America, Europe, Australia, New Zealand, South America and Central America, India, most of the Middle East and Asia, and select countries in Africa. Data for Pacific Island nations and the remaining countries of Africa was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.

    You can add this layer on top of any imagery, such as the Esri World Imagery map service, to provide a useful reference overlay that also includes street labels at the largest scales. (At the largest scales, the line symbols representing the streets and roads are automatically hidden and only the labels showing the names of streets and roads are shown). Imagery With Labels basemap in the basemap dropdown in the ArcGIS web and mobile clients does not include this World Transportation map. If you use the Imagery With Labels basemap in your map and you want to have road and street names, simply add this World Transportation layer into your map. It is designed to be drawn underneath the labels in the Imagery With Labels basemap, and that is how it will be drawn if you manually add it into your web map.

  19. K

    State of Texas City Limits

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Feb 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Railroad Commission of Texas (2024). State of Texas City Limits [Dataset]. https://koordinates.com/layer/15266-state-of-texas-city-limits/
    Explore at:
    mapinfo mif, kml, dwg, mapinfo tab, shapefile, pdf, csv, geodatabase, geopackage / sqliteAvailable download formats
    Dataset updated
    Feb 26, 2024
    Dataset authored and provided by
    Railroad Commission of Texas
    Area covered
    Description

    Vector polygon map data of city limits from across the State of Texas containing 2142 features.

    City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.

    By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..

    This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.

  20. A

    Digital Geologic-GIS Map of Lake Clark National Park and Preserve and...

    • data.amerigeoss.org
    pdf, zip
    Updated Sep 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Digital Geologic-GIS Map of Lake Clark National Park and Preserve and Vicinity, Alaska (NPS, GRD, GRI, LACL, LACL digital map) adapted from a U.S. Geological Survey Scientific Investigations Map by Wilson et. al. (2015), and U.S. Geological Survey Open-File Report maps by Bickerstaff, Hawley, Huber, Hudson, Millholland, Riehle and the U.S. Geological Survey (1998 to 2008) [Dataset]. https://data.amerigeoss.org/dataset/08b7cd6c-724d-4afa-bd9d-0902a77ba002
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Sep 18, 2019
    Dataset provided by
    United States
    Area covered
    Alaska
    Description

    The Unpublished Digital Geologic-GIS Map of Lake Clark National Park and Preserve and Vicinity, Alaska is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (lacl_geology.gdb), a 10.1 ArcMap (.mxd) map document (lacl_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lacl_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lacl_geology_gis_readme.pdf). Please read the lacl_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (lacl_geology_metadata.txt or lacl_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:1584,000 and United States National Map Accuracy Standards features are within (horizontally) 804.7 meters or 2640 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, Alaska Albers, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Lake Clark National Park and Preserve.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicolas Cadieux (2023). Shapefile to DJI Pilot KML conversion tool [Dataset]. http://doi.org/10.5683/SP3/W1QMQ9

Shapefile to DJI Pilot KML conversion tool

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jan 30, 2023
Dataset provided by
Borealis
Authors
Nicolas Cadieux
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This Python script (Shape2DJI_Pilot_KML.py) will scan a directory, find all the ESRI shapefiles (.shp), reproject to EPSG 4326 (geographic coordinate system WGS84 ellipsoid), create an output directory and make a new Keyhole Markup Language (.kml) file for every line or polygon found in the files. These new *.kml files are compatible with DJI Pilot 2 on the Smart Controller (e.g., for M300 RTK). The *.kml files created directly by ArcGIS or QGIS are not currently compatible with DJI Pilot.

Search
Clear search
Close search
Google apps
Main menu