53 datasets found
  1. B

    GIS2DJI: GIS file to DJI Pilot kml conversion tool

    • borealisdata.ca
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nicolas Cadieux (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. http://doi.org/10.5683/SP3/AFPMUJ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Borealis
    Authors
    Nicolas Cadieux
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

  2. d

    Building Footprints (current).

    • datadiscoverystudio.org
    • data.wu.ac.at
    csv, json
    Updated Feb 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Building Footprints (current). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/57c1600ae5cd4c6db2fad3195523be58/html
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 3, 2018
    Description

    description: Building footprints in Chicago. Metadata may be viewed and downloaded at http://bit.ly/HZVDIY. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.; abstract: Building footprints in Chicago. Metadata may be viewed and downloaded at http://bit.ly/HZVDIY. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  3. Z

    Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liu, Jie (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6432939
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zhu, Guang-Fu
    Liu, Jie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  4. d

    Steepest-Descent Lines for Kīlauea, Mauna Loa, Hualālai, and Mauna Kea...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Steepest-Descent Lines for Kīlauea, Mauna Loa, Hualālai, and Mauna Kea Volcanoes, Hawaiʻi [Dataset]. https://catalog.data.gov/dataset/steepest-descent-lines-for-klauea-mauna-loa-huallai-and-mauna-kea-volcanoes-hawaii
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Mauna Loa, Mauna Kea, Hualālai, Kīlauea, Hawaii
    Description

    This USGS data release includes two ESRI polyline shapefiles (file_names.shp) describing the describing the steepest-descent lines calculated at two levels of detail (See Process Step for explanation). To increase access to these data, KMZ (Compressed Keyhole Markup Language) versions of the polyline feature layers are included in this release (file_names.kmz). In addition to these data layers, two supplementary data layers from the Big Island Mapping Project (BIMP) showing lava flows originating on Mauna Loa and Kilauea volcanoes, originally published in Trusdell, Wolfe, and Morris (2006), are included for context and reference. Both ESRI polygon shapefiles and KMZ versions of these files are included, naming conventions are identical as the files in this release. This metadata file provides information for the GIS data files unique to this data release. Below are the files that comprise this release, including the metadata files: Steepest-Descent_lines_3M_m2.shp Steepest-Descent_lines_750K_m2.shp Steepest-Descent_lines_3M_m2.KMZ Steepest-Descent_lines_750K_m2.KMZ Kilauea1983-1996_from_BIMP.shp ML1984_from_BIMP.shp Kilauea1983-1996_from_BIMP.kmz ML1984_from_BIMP.kmz mauna_loa_steepest_descent_lines_FGDC.xml mauna_loa_steepest_descent_lines_FGDC.txt

  5. NOAFAULTS KMZ layer Version 2.1 (2019 update)

    • zenodo.org
    bin
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Athanassios Ganas; Athanassios Ganas (2023). NOAFAULTS KMZ layer Version 2.1 (2019 update) [Dataset]. http://doi.org/10.5281/zenodo.3483136
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 23, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Athanassios Ganas; Athanassios Ganas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The NOAFAULTs database of active faults was published in 2013 (versions 1.0 & 1.1). In this datase we present the upgrades comprising the newer version of the database (version 2.1). NOAFAULTs was created towards compiling a digital database of fault geometry and additional attributes (character of faulting, past seismicity etc) primarily to support seismicity monitoring at the National Observatory of Athens (NOA). It has been constructed from published fault maps in peer-reviewed journals since 1972 while the number of the scientific papers that were included is 110. The standard commercial software ARC GIS has been used to design and populate the database. In the new version, details on fault geometry, such as the strike, the dip-angle and the dip direction, and kinematics for each individual fault are included. For well-studied faults, information about the slip rate or the creep or the co-seismic slip is reported. The fault layer was produced by on-screen digitization and is available to the scientific community in ESRI shapefile (SHP), KML/KMZ and TXT formats in WGS84 projection. In this version of the database, we continue to focus on the active faults of the upper (Aegean + Eurasian) plate and the back-arc region of the Hellenic Arc, in general. A number of 2437 faults are now included.

  6. d

    Central_Business_District

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Central_Business_District [Dataset]. https://catalog.data.gov/dataset/central-business-district-fa76f
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    Chicago's central business district boundary. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ).

  7. Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California (NPS, GRD, GRI, YOSE, YOSE digital map) adapted from U.S. Geological Survey Geologic Quadrangle Maps by Bateman, Kistler, Huber, Dodge, Krauskopf, Peck and others (1965, 1966, 1968, 1971, 1980, 1985, 1987, 1989 and 2002), Miscellaneous Field Studies Maps by Huber (1983), and Bateman and Krauskopf (1987) and a Geologic Investigations Series Map by Wahrhaftig (2000), and a California Geological Survey Map Sheet map by Chesterman (1975 [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yosemite-national-park-and-vicinity-california-nps-grd-gri-yos
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California
    Description

    The Digital Geologic-GIS Map of Yosemite National Park and Vicinity, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (yose_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (yose_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (yose_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (yose_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yose_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yose_geology_metadata_faq.pdf). Please read the yose_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and California Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yose_geology_metadata.txt or yose_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  8. Data from: Climate Prediction Center (CPC) U.S. Hazards Outlook

    • data.cnra.ca.gov
    Updated Mar 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration (2023). Climate Prediction Center (CPC) U.S. Hazards Outlook [Dataset]. https://data.cnra.ca.gov/dataset/climate-prediction-center-cpc-u-s-hazards-outlook
    Explore at:
    arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Mar 2, 2023
    Dataset authored and provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    The Climate Prediction Center releases a US Hazards Outlook daily, Monday through Friday. The product highlights regions of anticipated hazardous weather during the next 3-7 and 8-14 days and examples include heavy snow, high winds, flooding, extreme heat and cold and severe thunderstorms. The product highlights regions of anticipated hazardous weather during the next 3-7 and 8-14 days. Three separate files are available for download for each time period. A soils shapefile (and KMZ) contain severe drought and enhanced wildfire risk hazards. A temperature file contains temperature, wind, and wave hazards, and a precipitation file contains rain, snow, and severe weather hazards. The contents of these file are mashed up to create one composite graphic per time period as well as being displayed on an interactive Google Map

  9. d

    ArchaeoGLOBE Regions

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArchaeoGLOBE Project (2023). ArchaeoGLOBE Regions [Dataset]. http://doi.org/10.7910/DVN/CQWUBI
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    ArchaeoGLOBE Project
    Description

    This dataset contains documentation on the 146 global regions used to organize responses to the ArchaeGLOBE land use questionnaire between May 18 and July 31, 2018. The regions were formed from modern administrative regions (Natural Earth 1:50m Admin1 - states and provinces, https://www.naturalearthdata.com/downloads/50m-cultural-vectors/50m-admin-1-states-provinces/). The boundaries of the polygons represent rough geographic areas that serve as analytical units useful in two respects - for the history of land use over the past 10,000 years (a moving target) and for the history of archaeological research. Some consideration was also given to creating regions that were relatively equal in size. The regionalization process went through several rounds of feedback and redrawing before arriving at the 146 regions used in the survey. No bounded regional system could ever truly reflect the complex spatial distribution of archaeological knowledge on past human land use, but operating at a regional scale was necessary to facilitate timely collaboration while achieving global coverage. Map in Google Earth Format: ArchaeGLOBE_Regions_kml.kmz Map in ArcGIS Shapefile Format: ArchaeGLOBE_Regions.zip (multiple files in zip file) The shapefile format is a digital vector file that stores geographic location and associated attribute information. It is actually a collection of several different file types: .shp — shape format: the feature geometry .shx — shape index format: a positional index of the feature geometry .dbf — attribute format: columnar attributes for each shape .prj — projection format: the coordinate system and projection information .sbn and .sbx — a spatial index of the features .shp.xml — geospatial metadata in XML format .cpg — specifies the code page for identifying character encoding Attributes: FID - a unique identifier for every object in a shapefile table (0-145) Shape - the type of object (polygon) World_ID - coded value assigned to each feature according to its division into one of seventeen ‘World Regions’ based on the geographic regions used by the Statistics Division of the United Nations (https://unstats.un.org/unsd/methodology/m49/), with small changes to better reflect archaeological scholarly communities. These large regions provide organizational structure, but are not analytical units for the study. World_RG - text description of each ‘World Region’ Archaeo_ID - unique identifier (1-146) corresponding to the region code used in the ArchaeoGLOBE land use questionnaire and all ArchaeoGLOBE datasets Archaeo_RG - text description of each region Total_Area - the total area, in square kilometers, of each region Land-Area - the total area minus the area of all lakes and reservoirs found within each region (source: https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-lakes/) PDF of Region Attribute Table: ArchaeoGLOBE Regions Attributes.pdf Excel file of Region Attribute Table: ArchaeoGLOBE Regions Attributes.xls Printed Maps in PDF Format: ArchaeoGLOBE Regions.pdf Documentation of the ArchaeoGLOBE Regional Map: ArchaeoGLOBE Regions README.doc

  10. d

    Street Center Lines (deprecated October 2014).

    • datadiscoverystudio.org
    • data.amerigeoss.org
    • +1more
    csv, json
    Updated Feb 3, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Street Center Lines (deprecated October 2014). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/97cf89d3d7244ecfbee7ea4d83a68227/html
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 3, 2018
    Description

    description: Street center lines in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.; abstract: Street center lines in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  11. 2010 Census Data

    • caliper.com
    Updated Mar 31, 2011
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2011). 2010 Census Data [Dataset]. https://www.caliper.com/mapping-software-data/2010-census-data.htm
    Explore at:
    cdf, shp, kml, kmz, geojsonAvailable download formats
    Dataset updated
    Mar 31, 2011
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2010
    Area covered
    United States
    Description

    2010 Census Tract data for use with GIS mapping software, databases, and web applications are from Caliper Corporation. Available for Maptitude or in any format such as shapefile, KML, KMZ, GeoJSON.

  12. A

    Digital Geologic-GIS Map of Lake Clark National Park and Preserve and...

    • data.amerigeoss.org
    pdf, zip
    Updated Sep 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2019). Digital Geologic-GIS Map of Lake Clark National Park and Preserve and Vicinity, Alaska (NPS, GRD, GRI, LACL, LACL digital map) adapted from a U.S. Geological Survey Scientific Investigations Map by Wilson et. al. (2015), and U.S. Geological Survey Open-File Report maps by Bickerstaff, Hawley, Huber, Hudson, Millholland, Riehle and the U.S. Geological Survey (1998 to 2008) [Dataset]. https://data.amerigeoss.org/dataset/08b7cd6c-724d-4afa-bd9d-0902a77ba002
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Sep 18, 2019
    Dataset provided by
    United States
    Area covered
    Alaska
    Description

    The Unpublished Digital Geologic-GIS Map of Lake Clark National Park and Preserve and Vicinity, Alaska is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (lacl_geology.gdb), a 10.1 ArcMap (.mxd) map document (lacl_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (lacl_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (lacl_geology_gis_readme.pdf). Please read the lacl_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (lacl_geology_metadata.txt or lacl_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:1584,000 and United States National Map Accuracy Standards features are within (horizontally) 804.7 meters or 2640 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm). The GIS data projection is NAD83, Alaska Albers, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Lake Clark National Park and Preserve.

  13. w

    Geographic data: Zip Codes (Shape File)

    • data.wu.ac.at
    • data.montgomerycountymd.gov
    • +1more
    csv, json, xml
    Updated Oct 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). Geographic data: Zip Codes (Shape File) [Dataset]. https://data.wu.ac.at/schema/data_montgomerycountymd_gov/dno0bS1kOGVl
    Explore at:
    xml, json, csvAvailable download formats
    Dataset updated
    Oct 11, 2017
    Description

    This dataset contains all zip codes in Montgomery County. Zip codes are the postal delivery areas defined by USPS. Zip codes with mailboxes only are not included.

    As this is geographic data, SHP and KMZ formats are available for download.

  14. CA Geographic Boundaries

    • data.ca.gov
    • s.cnmilf.com
    • +1more
    shp
    Updated May 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2024). CA Geographic Boundaries [Dataset]. https://data.ca.gov/dataset/ca-geographic-boundaries
    Explore at:
    shp(136046), shp(10153125), shp(2597712)Available download formats
    Dataset updated
    May 3, 2024
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Description

    This dataset contains shapefile boundaries for CA State, counties and places from the US Census Bureau's 2023 MAF/TIGER database. Current geography in the 2023 TIGER/Line Shapefiles generally reflects the boundaries of governmental units in effect as of January 1, 2023.

  15. W

    Rural Transport Routes

    • cloud.csiss.gmu.edu
    kmz, shp / zip
    Updated Jun 20, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ireland (2019). Rural Transport Routes [Dataset]. https://cloud.csiss.gmu.edu/uddi/nl/dataset/rural-transport-routes
    Explore at:
    kmz, shp / zipAvailable download formats
    Dataset updated
    Jun 20, 2019
    Dataset provided by
    Ireland
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets presented are mapped Demand Responsive Transport (DRT) routes and destinations, created by data provided by Local Link rural transport services in the Republic of Ireland. The datasets were created to provide representations of the areas of service which the services are willing to pick up passengers. The data are available in (zipped) shapefiles and KMZ file format.

  16. d

    Boundaries - Tax Increment Financing Districts (Deprecated March 2018).

    • datadiscoverystudio.org
    • data.amerigeoss.org
    csv, json
    Updated Jun 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Boundaries - Tax Increment Financing Districts (Deprecated March 2018). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/d0cfd126c0724212ba1f5aacc36dd731/html
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jun 6, 2018
    Description

    description: OUTDATED. See the current data at https://data.cityofchicago.org/d/fz5x-7zak -- Tax Increment Financing (TIF) district boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.; abstract: OUTDATED. See the current data at https://data.cityofchicago.org/d/fz5x-7zak -- Tax Increment Financing (TIF) district boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  17. E

    Nuclear Power Stations

    • finddatagovscot.dtechtive.com
    • dtechtive.com
    xml, zip
    Updated Feb 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Edinburgh (2017). Nuclear Power Stations [Dataset]. http://doi.org/10.7488/ds/1814
    Explore at:
    xml(0.0047 MB), zip(2.593 MB)Available download formats
    Dataset updated
    Feb 21, 2017
    Dataset provided by
    University of Edinburgh
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This dataset represents the location of nuclear power stations around the world in 2011. The dataset includes power plants that are not yet online. Information is supplied about the type of reactor (Boiling Water, Fast Breeder, Gas Cooled and so on), the power output and the projected power output where the plant, or a reactor at a plant, is not yet online. In addition, a link to the wikipidea page for the power station is provided where it is available. Also, a KMZ file is provided which has these links embedded in it. Example maps are included in the zip to help explain what information the dataset holds. The shapefile supplied here is derived from the KMZ file which is also included. The source of the KMZ file is: http://maptd.com/worldwide-map-of-nuclear-power-stations-and-earthquake-zones/ but it is unclear if the data was sourced directly from the IEAE or from the following blog http://declanbutler.info/blog/. Either way, the original source of the data is undoubtedly the IEAE http://www.iaea.org/programmes/a2/. To convert the data to shapefile required extensive data manipulation which was carried out in textpad and ArcGIS. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2011-04-01 and migrated to Edinburgh DataShare on 2017-02-21.

  18. C

    Boundaries - City

    • data.cityofchicago.org
    Updated Jun 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Chicago (2017). Boundaries - City [Dataset]. https://data.cityofchicago.org/Facilities-Geographic-Boundaries/City_Boundary/qqq8-j68g
    Explore at:
    xml, csv, kml, application/geo+json, xlsx, kmzAvailable download formats
    Dataset updated
    Jun 30, 2017
    Dataset authored and provided by
    City of Chicago
    Description

    The city boundary of Chicago.

    This dataset is in a format for spatial datasets that is inherently tabular but allows for a map as a derived view. Please click the indicated link below for such a map.

    To export the data in either tabular or geographic format, please use the Export button on this dataset.

  19. d

    Census_Tracts

    • catalog.data.gov
    • data.cityofchicago.org
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Census_Tracts [Dataset]. https://catalog.data.gov/dataset/census-tracts-c46f1
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    Census tract boundaries in Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

  20. d

    Census Blocks

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated Jun 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Census Blocks [Dataset]. https://catalog.data.gov/dataset/census-blocks-b54fd
    Explore at:
    Dataset updated
    Jun 8, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    2000 Census block boundaries clipped to Chicago. The data can be viewed on the Chicago Data Portal with a web browser. However, to view or use the files outside of a web browser, you will need to use compression software and special GIS software, such as ESRI ArcGIS (shapefile) or Google Earth (KML or KMZ), is required.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Nicolas Cadieux (2024). GIS2DJI: GIS file to DJI Pilot kml conversion tool [Dataset]. http://doi.org/10.5683/SP3/AFPMUJ

GIS2DJI: GIS file to DJI Pilot kml conversion tool

Related Article
Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Feb 22, 2024
Dataset provided by
Borealis
Authors
Nicolas Cadieux
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

GIS2DJI is a Python 3 program created to exports GIS files to a simple kml compatible with DJI pilot. The software is provided with a GUI. GIS2DJI has been tested with the following file formats: gpkg, shp, mif, tab, geojson, gml, kml and kmz. GIS_2_DJI will scan every file, every layer and every geometry collection (ie: MultiPoints) and create one output kml or kmz for each object found. It will import points, lines and polygons, and converted each object into a compatible DJI kml file. Lines and polygons will be exported as kml files. Points will be converted as PseudoPoints.kml. A PseudoPoints fools DJI to import a point as it thinks it's a line with 0 length. This allows you to import points in mapping missions. Points will also be exported as Point.kmz because PseudoPoints are not visible in a GIS or in Google Earth. The .kmz file format should make points compatible with some DJI mission software.

Search
Clear search
Close search
Google apps
Main menu