6 datasets found
  1. f

    Results of the ML models using PCA imputer.

    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Results of the ML models using PCA imputer. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  2. f

    Description of the dataset used in this study.

    • figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Description of the dataset used in this study. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  3. f

    Accuracy comparison of the ML models.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Accuracy comparison of the ML models. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  4. f

    Experimental setup for the proposed system.

    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turki Aljrees (2024). Experimental setup for the proposed system. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

  5. A

    ‘Pre-processed Chronic Kidney Disease Dataset.’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘Pre-processed Chronic Kidney Disease Dataset.’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-pre-processed-chronic-kidney-disease-dataset-bb6f/latest
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Pre-processed Chronic Kidney Disease Dataset.’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mahmoudlimam/preprocessed-chronic-kidney-disease-dataset on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    This is a processed version of the Chronic Kidney Disease dataset.
    Here is the original link: https://archive.ics.uci.edu/ml/datasets/Chronic_Kidney_Disease
    Here is the link on Kaggle: https://www.kaggle.com/mansoordaku/ckdisease

    Content

    I encoded the categorical features with One-Hot Encoding. This didn't increase dimensionality as they are all binary. I imputed the missing values with sklearn's KNNImputer.
    As KNN requires all features to be on the same scale, I tried a few transformations before imputing.
    I settled with sklearn's gaussian QuantileTransformer as it produced very decent prediction results later on.
    I reverse-transformed the features after imputation. Here is a link for the full work: https://www.kaggle.com/mahmoudlimam/chronic-kidney-disease-clustering-and-prediction.

    --- Original source retains full ownership of the source dataset ---

  6. f

    Performance comparison with state-of-the-art studies.

    • plos.figshare.com
    xls
    Updated Jan 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The citation is currently not available for this dataset.
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 3, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Turki Aljrees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Performance comparison with state-of-the-art studies.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Turki Aljrees (2024). Results of the ML models using PCA imputer. [Dataset]. http://doi.org/10.1371/journal.pone.0295632.t006

Results of the ML models using PCA imputer.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jan 3, 2024
Dataset provided by
PLOS ONE
Authors
Turki Aljrees
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Cervical cancer is a leading cause of women’s mortality, emphasizing the need for early diagnosis and effective treatment. In line with the imperative of early intervention, the automated identification of cervical cancer has emerged as a promising avenue, leveraging machine learning techniques to enhance both the speed and accuracy of diagnosis. However, an inherent challenge in the development of these automated systems is the presence of missing values in the datasets commonly used for cervical cancer detection. Missing data can significantly impact the performance of machine learning models, potentially leading to inaccurate or unreliable results. This study addresses a critical challenge in automated cervical cancer identification—handling missing data in datasets. The study present a novel approach that combines three machine learning models into a stacked ensemble voting classifier, complemented by the use of a KNN Imputer to manage missing values. The proposed model achieves remarkable results with an accuracy of 0.9941, precision of 0.98, recall of 0.96, and an F1 score of 0.97. This study examines three distinct scenarios: one involving the deletion of missing values, another utilizing KNN imputation, and a third employing PCA for imputing missing values. This research has significant implications for the medical field, offering medical experts a powerful tool for more accurate cervical cancer therapy and enhancing the overall effectiveness of testing procedures. By addressing missing data challenges and achieving high accuracy, this work represents a valuable contribution to cervical cancer detection, ultimately aiming to reduce the impact of this disease on women’s health and healthcare systems.

Search
Clear search
Close search
Google apps
Main menu