Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The Kvasir-VQA dataset is an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations. This dataset is designed to facilitate advanced machine learning tasks in gastrointestinal (GI) diagnostics, including image captioning, Visual Question Answering (VQA) and text-based generation of synthetic medical images Homepage: https://datasets.simula.no/kvasir-vqa
Usage
You can use the Kvasir-VQA dataset directly from… See the full description on the dataset page: https://huggingface.co/datasets/SimulaMet-HOST/Kvasir-VQA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview This is the largest Gastrointestinal dataset generously provided by Simula Research Laboratory in Norway
You can read their research paper here in Nature
In total, the dataset contains 10,662 labeled images stored using the JPEG format. The images can be found in the images folder. The classes, which each of the images belong to, correspond to the folder they are stored in (e.g., the ’polyp’ folder contains all polyp images, the ’barretts’ folder contains all images of Barrett’s esophagus, etc.). Each class-folder is located in a subfolder describing the type of finding, which again is located in a folder describing wheter it is a lower GI or upper GI finding. The number of images per class are not balanced, which is a general challenge in the medical field due to the fact that some findings occur more often than others. This adds an additional challenge for researchers, since methods applied to the data should also be able to learn from a small amount of training data. The labeled images represent 23 different classes of findings.
The data is collected during real gastro- and colonoscopy examinations at a Hospital in Norway and partly labeled by experienced gastrointestinal endoscopists.
Use Cases
"Artificial intelligence is currently a hot topic in medicine. The fact that medical data is often sparse and hard to obtain due to legal restrictions and lack of medical personnel to perform the cumbersome and tedious labeling of the data, leads to technical limitations. In this respect, we share the Hyper-Kvasir dataset, which is the largest image and video dataset from the gastrointestinal tract available today."
"We have used the labeled data to research the classification and segmentation of GI findings using both computer vision and ML approaches to potentially be used in live and post-analysis of patient examinations. Areas of potential utilization are analysis, classification, segmentation, and retrieval of images and videos with particular findings or particular properties from the computer science area. The labeled data can also be used for teaching and training in medical education. Having expert gastroenterologists providing the ground truths over various findings, HyperKvasir provides a unique and diverse learning set for future clinicians. Moreover, the unlabeled data is well suited for semi-supervised and unsupervised methods, and, if even more ground truth data is needed, the users of the data can use their own local medical experts to provide the needed labels. Finally, the videos can in addition be used to simulate live endoscopies feeding the video into the system like it is captured directly from the endoscopes enable developers to do image classification."
Borgli, H., Thambawita, V., Smedsrud, P.H. et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci Data 7, 283 (2020). https://doi.org/10.1038/s41597-020-00622-y
Using this Dataset
Hyper-Kvasir is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source. This means that in all documents and papers that use or refer to the Hyper-Kvasir dataset or report experimental results based on the dataset, a reference to the related article needs to be added: PREPRINT: https://osf.io/mkzcq/. Additionally, one should provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
About Roboflow
Roboflow makes managing, preprocessing, augmenting, and versioning datasets for computer vision seamless.
Developers reduce 50% of their boilerplate code when using Roboflow's workflow, automate annotation quality assurance, save training time, and increase model reproducibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. However, medical data is often sparse and unavailable to the research community, and qualified medical personnel rarely have time for the tedious labelling work. In this respect, we present Kvasir-Capsule, a large VCE dataset collected from examinations at Hospitals in Norway. Kvasir-Capsule consists of 117 videos which can be used to extract a total of 4,741,504 image frames. We have labelled and medically verified 47,238 frames with a bounding box around detected anomalies from 14 different classes of findings. In addition to these labelled images, there are 4,694,266 unlabelled frames included in the dataset. Initial work demonstrates the potential benefits ofAI-based computer-assisted diagnosis systems for VCE. However, they also show that there is great potential for improvements, and the Kvasir-Capsule dataset can play a valuable role in developing better algorithms in order for VCE technology to reach its true potential.
https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41597-020-00622-y/MediaObjects/41597_2020_622_Fig1_HTML.png">
Automatic detection of diseases by use of computers is an important, but still unexplored field of research. Such innovations may improve medical practice and refine health care systems all over the world. However, datasets containing medical images are hardly available, making reproducibility and comparison of approaches almost impossible. Here, we present Kvasir, a dataset containing images from inside the gastrointestinal (GI) tract. The collection of images are classified into three important anatomical landmarks and three clinically significant findings. In addition, it contains two categories of images related to endoscopic polyp removal. Sorting and annotation of the dataset is performed by medical doctors (ex- perienced endoscopists). In this respect, Kvasir is important for research on both single- and multi-disease computer aided detec- tion. By providing it, we invite and enable multimedia researcher into the medical domain of detection and retrieval.
The human digestive system may be affected by several diseases. Altogether esophageal, stomach and colorectal cancer accounts for about 2.8 million new cases and 1.8 million deaths per year. Endoscopic examinations are the gold standards for investigation of the GI tract. Gastroscopy is an examination of the upper GI tract including esophagus, stomach and first part of small bowel, while colonoscopy covers the large bowel (colon) and rectum. Both these examinations are real-time video examinations of the inside of the GI tract by use of digital high definition endoscopes. Endoscopic examinations are resource demanding and requires both expensive technical equipment and trained personnel. For colorectal cancer prevention, endoscopic detection and removal of possible precancerous lesions are essential. Adenoma detection is therefore considered to be an important quality indicator in colorectal cancer screening. However, the ability to detect adenomas varies between doctors, and this may eventually affect the individuals’ risk of getting colorectal cancer. Endoscopic assessment of severity and sub-classification of different findings may also vary from one doctor to another. Accurate grading of diseases are important since it may influence decision-making on treatment and follow-up. For example, the degree of inflammation directly affects the choice of therapy in inflammatory bowel diseases (IBD). An objective and automated scoring system would therefore be highly welcomed. Automatic detection, recognition and assessment of pathological findings will probably contribute to reduce inequalities, improve quality and optimize use of scarce medical resources. Furthermore, since endoscopic examinations are real-time investigations, both normal and abnormal findings have to be recorded and documented within written reports. Automatic report generation would proba- bly contribute to reduce doctors’ time required for paperwork and thereby increase time to patient care. Reliable and careful docu- mentation with the use of minimal standard terminology (MST) may also contribute to improved patient follow-up and treatment. To our knowledge, a standardized and automatic reporting system that ensure high quality endoscopy reports does not exist. In order to make the health care system more scalable and cost effective, basic research in the intersection between computer science and medicine must go beyond traditional medical imaging by combining this area with multimedia data analysis and retrieval, artificial intelligence, and distributed processing. Next-generation medical big-data applications are a frontier for innovation, compe- tition and productivity, where there are currently large initiatives both in the EU and the US. In the area of multimedia research, people are starting to see the synergies between multimedia and medical systems. For automatic algorithmic detection of abnormalities in the GI tract, there have been many proposals from various research communities, especially for the topic of polyp detection. Hovever, the results are hard to reproduce due to lack of available medical data, i.e., the work listed above all use different and non-public data sets. Here, we therefore publish Kvasir: A Multi-Class Image Dataset for Computer Aided Gastrointestinal Disease Detection from the Vestre Viken Health Trust (Norway) containing not only polyps, but also two other findings, two classes related to polyp removal and three anatomical landmarks in the GI tract.
The data is collected using endoscopic equipment at Vestre Viken Health Trust (VV) in Norway. The VV consists of 4 hospitals and provides health care to 470.000 people. One of these hospitals (the B...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir is a dataset for object detection tasks - it contains Artefacts annotations for 997 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
The Hyper-Kvasir dataset contains 10,662 images labeled with anatomical landmarks as well as pathological and normal findings.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Md Masum Mia
Released under CC0: Public Domain
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir Segmentation is a dataset for object detection tasks - it contains Polyps annotations for 895 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Md. Masum Mia
Released under CC0: Public Domain
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Kvasir-VQA-x1
A Multimodal Dataset for Medical Reasoning and Robust MedVQA in Gastrointestinal Endoscopy Kvasir-VQA-x1 on GitHubOriginal Image Download (Simula Datasets) Paper
Overview
Kvasir-VQA-x1 is a large-scale dataset designed to benchmark medical visual question answering (MedVQA) in gastrointestinal (GI) endoscopy. It introduces 159,549 new QA pairs stratified by clinical complexity, along with support for visual robustness testing via augmentations.… See the full description on the dataset page: https://huggingface.co/datasets/SimulaMet/Kvasir-VQA-x1.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Computer-aided classification of diseases of the gastrointestinal tract (GIT) has become a crucial area of research. Medical science and artificial intelligence have helped medical experts find GIT diseases through endoscopic procedures. Wired endoscopy is a controlled procedure that helps the medical expert in disease diagnosis. Manual screening of the endoscopic frames is a challenging and time taking task for medical experts that also increases the missed rate of the GIT disease. An early diagnosis of GIT disease can save human beings from fatal diseases. An automatic deep feature learning-based system is proposed for GIT disease classification. The adaptive gamma correction and weighting distribution (AGCWD) preprocessing procedure is the first stage of the proposed work that is used for enhancing the intensity of the frames. The deep features are extracted from the frames by deep learning models including InceptionNetV3 and GITNet. Ant Colony Optimization (ACO) procedure is employed for feature optimization. Optimized features are fused serially. The classification operation is performed by variants of support vector machine (SVM) classifiers, including the Cubic SVM (CSVM), Coarse Gaussian SVM (CGSVM), Quadratic SVM (QSVM), and Linear SVM (LSVM) classifiers. The intended model is assessed on two challenging datasets including KVASIR and NERTHUS that consist of eight and four classes respectively. The intended model outperforms as compared with existing methods by achieving an accuracy of 99.32% over the KVASIR dataset and 99.89% accuracy using the NERTHUS dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir SEG is a dataset for object detection tasks - it contains Polyp annotations for 1,000 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir Med is a dataset for object detection tasks - it contains Objects annotations for 249 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir Seg Yolov11 V1 is a dataset for object detection tasks - it contains Polyp annotations for 1,000 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir Seg Yolov11 is a dataset for object detection tasks - it contains Polyps Detection annotations for 1,000 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Kvasir Capsule is a dataset for object detection tasks - it contains Annomalies annotations for 4,184 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Dataset Card for "Kvasir-SEG"
More Information needed
Kvasir-VQA-x1/viz dataset hosted on Hugging Face and contributed by the HF Datasets community
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains key characteristics about the data described in the Data Descriptor Kvasir-Capsule, a video capsule endoscopy dataset. Contents:
1. human readable metadata summary table in CSV format
2. machine readable metadata file in JSON format
https://datasets.simula.no/kvasir-seg/https://datasets.simula.no/kvasir-seg/
The Kvasir-SEG dataset (size 46.2 MB) contains 1000 polyp images and their corresponding ground truth from the Kvasir Dataset v2. The resolution of the images contained in Kvasir-SEG varies from 332x487 to 1920x1072 pixels. The images and its corresponding masks are stored in two separate folders with the same filename. The image files are encoded using JPEG compression, and online browsing is facilitated. The open-access dataset can be easily downloaded for research and educational purposes.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The Kvasir-VQA dataset is an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations. This dataset is designed to facilitate advanced machine learning tasks in gastrointestinal (GI) diagnostics, including image captioning, Visual Question Answering (VQA) and text-based generation of synthetic medical images Homepage: https://datasets.simula.no/kvasir-vqa
Usage
You can use the Kvasir-VQA dataset directly from… See the full description on the dataset page: https://huggingface.co/datasets/SimulaMet-HOST/Kvasir-VQA.