COVID cases and deaths for LA County and California State. Updated daily. Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.
*****PLEASE NOTE: THIS SERVICE IS NOT CONSIDERED AUTHORITATIVE*****For authoritative case and death counts please see the data in the Department of Public Health's LA County COVID-19 Surveillance Dashboarddashboard.publichealth.lacounty.gov/covid19_surveillance_dashboard/Several tables of the data are made available to download, including the current daily count, by selecting a table from the menu on the left side of the dashboard and clicking the "Download his table" button at the top of the table's page.*********************************************************************************This is the hosted feature layer VIEW for Historic case counts that is being updated from the SDE data source through automated scripting.Additionally, this feature layer contains the Accumulated Cases and Death counts. To just view the accumulated totals, apply a filter for Community = County of Los Angeles.The script runs daily at 8pm and finishes around 8:15pm.This view layer replaces the older version. Please update your data source for historic or accumulated COVID-19 cases with this feature layer and remove the older version from your webmaps and applications. Please contact the GIS Unit with questions at gis@ceooem.lacounty.gov.
The Mayor’s Office utilizes the most recent data to inform decisions about COVID-19 response and policies. The Los Angeles COVID-19 Neighborhood Map visualizes the cases and deaths across 139 neighborhoods in the city. It includes the same data used by the office to spot changes in infection trends in the city, and identify areas where testing resources should be deployed.Data Source:Data are provided on a weekly basis by the LA County Department of Public Health and prepared by the LA Mayor's Office Innovation Team. The data included in this map are on a one-week lag. That means the data shown here are reporting statistics gathered from one week ago. This map will be updated weekly on Mondays. Click on the maps to zoom in, get more details, and see the legends.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
As an Angeleno passionate about statistics and data, I volunteered to work with the City of Los Angeles on a data science project focused on Covid-19 cases throughout the Los Angeles county. The focus of that project involved web scraping Covid-19 cases released by the County of Los Angeles Public Health. At the time of this project and to my knowledge still, an API has not been built to easily retrieve this data. I've built the web scraping code and have stored this data locally. To make your life easier, I'm sharing here. Enjoy!
Data spans September 19, 2020 through the previous day (For updated continued data feed, please use the repo code). The data in published daily in the evenings by LA Public Health and contains data through the most recent complete date, so it's always 1 day behind. The cases and deaths data is a cumulated count for each point of interest for the given day. Folders after and including January 4, 2021 contain that day's published data, folders before this date contain data for the previous day.
For more details on how the raw data was gathered, visit the direct source @ City of Los Angeles Public Health
Checkout the folder called "Example for Descriptions". It includes details about each csv file contained in each folder.
In Los Angeles County, methamphetamine accounted for the highest share of overdose deaths among people experiencing homelessness (PEH) in the 12 months before and after the COVID-19 pandemic onset, contributing to approximately three-quarters of all overdose deaths in both years. Fentanyl ranked as the second leading cause of overdose death in both periods, but showed the largest increase in its contribution over the analyzed timeframe. This statistic depicts the percentage of deaths among people experiencing homelessness by overdose pre- and post-COVID-19 pandemic in Los Angeles County, by drug type.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Table S1. Collection dates and quality control for 260 patient samples.
Deaths were determined to be COVID-associated if they met the Department of Public Health's surveillance definition at the time of death.The cumulative COVID-19 mortality rate can be used to measure the most severe impacts of COVID-19 in a community. There have been documented inequities in COVID-19 mortality rates by demographic and geographic factors. Black and Brown residents, seniors, and those living in areas with higher rates of poverty have all been disproportionally impacted.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Vaccination rates by neighborhood. Updated weekly. Data published from LA County Dept of Public Health: http://publichealth.lacounty.gov/media/coronavirus/vaccine/vaccine-dashboard.htm
The COVID-19 CARES Act Childcare Provider Grant Program provided eligible Family Home childcare providers a $15,000 grant and Childcare Centers a $40,000 grant. The program focused on marketing to and assisting childcare businesses that have been impacted and have suffered economic hardship due to COVID-19.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Note: On April 30, 2024, the Federal mandate for COVID-19 and influenza associated hospitalization data to be reported to CDC’s National Healthcare Safety Network (NHSN) expired. Hospitalization data beyond April 30, 2024, will not be updated on the Open Data Portal. Hospitalization and ICU admission data collected from summer 2020 to May 10, 2023, are sourced from the California Hospital Association (CHA) Survey. Data collected on or after May 11, 2023, are sourced from CDC's National Healthcare Safety Network (NHSN).
Data is from the California Department of Public Health (CDPH) Respiratory Virus State Dashboard at https://www.cdph.ca.gov/Programs/CID/DCDC/Pages/Respiratory-Viruses/RespiratoryDashboard.aspx.
Data are updated each Friday around 2 pm.
For COVID-19 death data: As of January 1, 2023, data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2023–Present. Prior to January 1, 2023, death data was sourced from the COVID-19 case registry. The change in data source occurred in July 2023 and was applied retroactively to all 2023 data to provide a consistent source of death data for the year of 2023. Influenza death data was sourced from the California Department of Public Health, California Comprehensive Death File (Dynamic), 2020–Present.
COVID-19 testing data represent data received by CDPH through electronic laboratory reporting of test results for COVID-19 among residents of California. Testing date is the date the test was administered, and tests have a 1-day lag (except for the Los Angeles County, which has an additional 7-day lag). Influenza testing data represent data received by CDPH from clinical sentinel laboratories in California. These laboratories report the aggregate number of laboratory-confirmed influenza virus detections and total tests performed on a weekly basis. These data do not represent all influenza testing occurring in California and are available only at the state level.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with historical case and percent positivity data for each county from January 22, 2020 (Weekly Historical Changes dataset) and a dataset with the levels as originally posted (Weekly Originally Posted dataset) since October 20, 2022. Please navigate to the Weekly Originally Posted dataset for the Community Transmission Levels published weekly on Thursdays.
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests resulted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers.
This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
Archived data CDC has archived two prior versions of these datasets. Both versions contain the same 7 data elements reflecting community transmission levels for all available counties and jurisdictions; however, the datasets updated daily. The archived datasets can be found here:
Archived Originally Posted dataset
Archived Historical Changes dataset
Archived Data Notes:
October 27, 2022: Due to a processing issue this dataset will not be posted this week. CDC is currently working to address the issue and will publish the data when able.
November 10, 2022: As of 11/10/2022, this dataset will continue to incorporate historical updates made to case and percent positivity data; however, community transmission level will only be published in the corresponding Weekly COVID-19 County Level of Community Transmission as Originally Posted dataset (Weekly Originally Posted dataset).
Note:
October 20, 2022: Due to a data reporting error, the case rate for Philadelphia County, Pennsylvania is lower than expected in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Level for Philadelphia County being underestimated; therefore, it should be interpreted with caution.
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 3, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Missouri counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 10, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Alabama counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Per the request of the jurisdiction, cases among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases.
November 10, 2022: In the COVID-19 Community Transmission Level data released on November 10, 2022, multiple municipalities in Puerto Rico are reporting higher than expected increases in case counts. CDC is working with territory officials to verify the data submitted.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the COVID-19 Community Transmission Level data released on December 1, 2022. Therefore, the COVID-19 Community Transmission Levels may be underestimated and should be interpreted with caution.
December 22, 2022: Due to an internal revision process, case rates for some Tennessee counties may appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Tennessee counties may be overestimated and should be interpreted with caution.
December 22, 2022: Due to reporting of a backlog of historic COVID-19 cases, case rates for some Louisiana counties will appear higher than expected in the December 22, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for some Louisiana counties may be overestimated and should be interpreted with caution.
December 29, 2022: Due to technical difficulties, county data from Alabama could not be incorporated via standard practices. As a result, case and death metrics will be reported as 0 in the December 29, 2022, weekly release. Therefore, the COVID-19 Community Transmission Levels metrics for Alabama counties will be underestimated and should be interpreted with caution.
January 5, 2023: Due to a reporting cadence issue, case rates for all Alabama counties will be calculated based on 14 days’ worth of case count data in the COVID-19 Community Transmission Level information released on January 5, 2023, instead of the customary 7 days’ worth of case count data. Therefore, the weekly case rates will be overestimated, which could affect counties’ COVID-19 Community Transmission Level classification and should be interpreted with caution.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case metrics will appear higher than expected in the January 5, 2023, weekly release. COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case data will be reported as 0. As a result, case metrics will appear lower than expected in the January 12, 2023, weekly release. COVID-19 Community Transmission metrics may be underestimated and should be interpreted with caution.
January 13, 2023: Aggregate case data released for Los Angeles County, California for the week of December 22nd, 2022, and December 29th, 2022, have been corrected for a data processing error.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release. Therefore, COVID-19 Community Transmission metrics may be overestimated and should be interpreted with caution.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties
The counties of Trousdale and Lake – both in Tennessee – had the highest COVID-19 infection rates in the United States as of June 9, 2020. Dakota, Nobles, and Lincoln also ranked among the U.S. counties with the highest number of coronavirus cases per 100,000 people.
Coronavirus hits the East Coast In the United States, the novel coronavirus had infected around 5.4 million people and had caused nearly 170,000 deaths by mid-August 2020. The densely populated states of New York and New Jersey were at the epicenter of the outbreak in the country. New York City, which is composed of five counties, was one of the most severely impacted regions. However, the true level of transmission is likely to be much higher because many people will be asymptomatic or suffer only mild symptoms that are not diagnosed.
All states are in crisis The first coronavirus case in the U.S. was confirmed in the state of Washington in mid-January 2020. At the time, it was unclear how the virus was spreading; we now know that close contact with an infected person and breathing in their respiratory droplets is the primary mode of transmission. It is no surprise that the four states with the most coronavirus cases are those with the highest populations: New York, Texas, Florida, and California. However, Louisiana was the state with the highest COVID-19 infection rate per 100,000 people as of August 24, 2020.
Death rate has been age-adjusted by the 2000 U.S. standard populaton. All-cause mortality is an important measure of community health. All-cause mortality is heavily driven by the social determinants of health, with significant inequities observed by race and ethnicity and socioeconomic status. Black residents have consistently experienced the highest all-cause mortality rate compared to other racial and ethnic groups. During the COVID-19 pandemic, Latino residents also experienced a sharp increase in their all-cause mortality rate compared to White residents, demonstrating a reversal in the previously observed mortality advantage, in which Latino individuals historically had higher life expectancy and lower mortality than White individuals despite having lower socioeconomic status on average. The disproportionately high all-cause mortality rates observed among Black and Latino residents, especially since the onset of the COVID-19 pandemic, are due to differences in social and economic conditions and opportunities that unfairly place these groups at higher risk of developing and dying from a wide range of health conditions, including COVID-19.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
In Los Angeles County, the number of deaths among people experiencing homelessness (PEH) had an overall increase when comparing the 12 months pre- and post-COVID-19. Among the leading death causes, drug overdose reported the biggest increase of 78 percent. Additionally, COVID-19 was the third leading cause of death from April 1, 2020 to March 31, 2021, resulting in 179 deaths during that time. This statistic depicts the number of deaths among people experiencing homelessness, 12 months pre- and post-COVID-19 pandemic, in Los Angeles County, by cause of death.
The dataset provides number of Santa Clara County residents who were administered at least one dose of COVID-19 vaccine by city. Source: California Immunization Registry.
Data is from the California Department of Public Health (CDPH) Respiratory Virus Weekly Report.
The report is updated each Friday.
Laboratory surveillance data: California laboratories report SARS-CoV-2 test results to CDPH through electronic laboratory reporting. Los Angeles County SARS-CoV-2 lab data has a 7-day reporting lag. Test positivity is calculated using SARS-CoV-2 lab tests that has a specimen collection date reported during a given week.
Laboratory surveillance for influenza, respiratory syncytial virus (RSV), and other respiratory viruses (parainfluenza types 1-4, human metapneumovirus, non-SARS-CoV-2 coronaviruses, adenovirus, enterovirus/rhinovirus) involves the use of data from clinical sentinel laboratories (hospital, academic or private) located throughout California. Specimens for testing are collected from patients in healthcare settings and do not reflect all testing for influenza, respiratory syncytial virus, and other respiratory viruses in California. These laboratories report the number of laboratory-confirmed influenza, respiratory syncytial virus, and other respiratory virus detections and isolations, and the total number of specimens tested by virus type on a weekly basis.
Test positivity for a given week is calculated by dividing the number of positive COVID-19, influenza, RSV, or other respiratory virus results by the total number of specimens tested for that virus. Weekly laboratory surveillance data are defined as Sunday through Saturday.
Hospitalization data: Data on COVID-19 and influenza hospital admissions are from Centers for Disease Control and Prevention’s (CDC) National Healthcare Safety Network (NHSN) Hospitalization dataset. The requirement to report COVID-19 and influenza-associated hospitalizations was effective November 1, 2024. CDPH pulls NHSN data from the CDC on the Wednesday prior to the publication of the report. Results may differ depending on which day data are pulled. Admission rates are calculated using population estimates from the P-3: Complete State and County Projections Dataset provided by the State of California Department of Finance (https://dof.ca.gov/forecasting/demographics/projections/). Reported weekly admission rates for the entire season use the population estimates for the year the season started. For more information on NHSN data including the protocol and data collection information, see the CDC NHSN webpage (https://www.cdc.gov/nhsn/index.html).
CDPH collaborates with Northern California Kaiser Permanente (NCKP) to monitor trends in RSV admissions. The percentage of RSV admissions is calculated by dividing the number of RSV-related admissions by the total number of admissions during the same period. Admissions for pregnancy, labor and delivery, birth, and outpatient procedures are not included in total number of admissions. These admissions serve as a proxy for RSV activity and do not necessarily represent laboratory confirmed hospitalizations for RSV infections; NCKP members are not representative of all Californians.
Weekly hospitalization data are defined as Sunday through Saturday.
Death certificate data: CDPH receives weekly year-to-date dynamic data on deaths occurring in California from the CDPH Center for Health Statistics and Informatics. These data are limited to deaths occurring among California residents and are analyzed to identify influenza, respiratory syncytial virus, and COVID-19-coded deaths. These deaths are not necessarily laboratory-confirmed and are an underestimate of all influenza, respiratory syncytial virus, and COVID-19-associated deaths in California. Weekly death data are defined as Sunday through Saturday.
Wastewater data: This dataset represents statewide weekly SARS-CoV-2 wastewater summary values. SARS-CoV-2 wastewater concentrations from all sites in California are combined into a single, statewide, unit-less summary value for each week, using a method for data transformation and aggregation developed by the CDC National Wastewater Surveillance System (NWSS). Please see the CDC NWSS data methods page for a description of how these summary values are calculated. Weekly wastewater data are defined as Sunday through Saturday.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesTo evaluate rapid COVID-19 vaccine clinic implementation from January-April 2021 in the Los Angeles County Department of Health Services (LACDHS), the second-largest US safety net health system. During initial vaccine clinic implementation, LACDHS vaccinated 59,898 outpatients, 69% of whom were Latinx (exceeding the LA County Latinx population of 46%). LACDHS is a unique safety net setting to evaluate rapid vaccine implementation due to system size, geographic breadth, language/racial/ethnic diversity, limited health staffing resources, and socioeconomic complexity of patients.MethodsImplementation factors were assessed through semi-structured interviews of staff from all twelve LACDHS vaccine clinics from August-November 2021 using the Consolidated Framework for Implementation Research (CFIR) and themes analyzed using rapid qualitative analysis.ResultsOf 40 potential participants, 25 health professionals completed an interview (27% clinical providers/medical directors, 23% pharmacist, 15% nursing staff, and 35% other). Qualitative analysis of participant interviews yielded ten narrative themes. Implementation facilitators included bidirectional communication between system leadership and clinics, multidisciplinary leadership and operations teams, expanded use of standing orders, teamwork culture, use of active and passive communication structures, and development of patient-centered engagement strategies. Barriers to implementation included vaccine scarcity, underestimation of resources needed for patient outreach, and numerous process challenges encountered.ConclusionPrevious studies focused on robust advance planning as a facilitator and understaffing and high staff turnover as barriers to implementation in safety net health systems. This study found facilitators that can mitigate lack of advance planning and staffing challenges present during public health emergencies such as the COVID-19 pandemic. The ten identified themes may inform future implementations in safety net health systems.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The reference group is individuals with no comorbidity, , and non-smoking.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We collected county-level cumulative COVID-19 confirmed cases and death from Mar 25 to Nov 12, 2020, across the contiguous United States from USAFacts (usafacts.org). We considered Mar 25 to Jun 3 as the “1st wave”, Jun 4 to Sep 2 as the “2nd wave”, and Sep 3 to Nov 12 as the “3rd wave” of COVID-19. For the 2nd and 3rd waves, we analyzed the targeted counties in the sunbelt region (including AL, AZ, AR, CA, FL, GA, KS, LA, MS, NV, NM, NC, OK, SC, TX, TN, and UT states) and great plains region (including IA, IL, IN, KS, MI, MO, MN, ND, NE, OH, SD, and WI states), respectively. MIR, as a proxy for survival rate, is calculated by dividing the number of confirmed deaths in each county by the confirmed cases in the same county at the same time-period multiplied by 100. MIR ranges from 0%-100%, 100% indicating the worst situation where all confirmed cases have died.
Thirty-eight potential risk factors (covariates), including county-level MR of comorbidities & disorders, demographics & social factors, and environmental factors, were retrieved from the University of Washington Global Health Data Exchange (http://ghdx.healthdata.org/us-data). Comorbidities and disorders include CVD, cardiomyopathy and myocarditis and myocarditis, hypertensive heart disease, peripheral vascular disease, atrial fibrillation, cerebrovascular disease, diabetes, hepatitis, HIV/AIDS, tuberculosis (TB), lower respiratory infection, interstitial lung disease and pulmonary sarcoidosis, asthma, COPD, ischemia, mesothelioma, tracheal cancer, leukemia, pancreatic cancer, rheumatic disease, drug use disorder, and alcohol use disorder. Demographics & social factors include age, female African American%, female white American%, male African American%, male white American%, Asian%, smokers%, unemployed%, income rate, food insecurity, fair/poor health, and uninsured%. Environmental factors include county population density, air quality index (AQI), temperature, and PM. A descriptive table, including all potential risk factors, is provided in Table S1).
COVID cases and deaths for LA County and California State. Updated daily. Data source: Johns Hopkins University (https://coronavirus.jhu.edu/us-map), Johns Hopkins GitHub (https://github.com/CSSEGISandData/COVID-19/blob/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_US.csv). Code available: https://github.com/CityOfLosAngeles/covid19-indicators.