Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AWC to 60cm is one of 18 attributes of soils chosen to underpin the land suitability assessment of the Roper River Water Resource Assessment (ROWRA) through the digital soil mapping process (DSM). AWC (available water capacity) indicates the ability of a soil to retain and supply water for plant growth. This AWC raster data represents a modelled dataset of AWC to 60cm (mm of water to 60cm of soil depth) and is derived from analysed site data, spline calculations and environmental covariates. AWC is a parameter used in land suitability assessments for rainfed cropping and for water use efficiency in irrigated land uses. This raster data provides improved soil information used to underpin and identify opportunities and promote detailed investigation for a range of sustainable regional development options and was created within the ‘Land Suitability’ activity of the CSIRO ROWRA. A companion dataset and statistics reflecting reliability of this data are also provided and can be found described in the lineage section of this metadata record. Processing information is supplied in ranger R scripts and attributes were modelled using a Random Forest approach. The DSM process is described in the CSIRO ROWRA published report ‘Soils and land suitability for the Roper catchment, Northern Territory’. A technical report from the CSIRO Roper River Water Resource Assessment to the Government of Australia. The Roper River Water Resource Assessment provides a comprehensive overview and integrated evaluation of the feasibility of aquaculture and agriculture development in the Roper catchment NT as well as the ecological, social and cultural (indigenous water values, rights and aspirations) impacts of development. Lineage: This AWC to 60cm dataset has been generated from a range of inputs and processing steps. Following is an overview. For more information refer to the CSIRO ROWRA published reports and in particular ' Soils and land suitability for the Roper catchment, Northern Territory’. A technical report from the CSIRO Roper River Water Resource Assessment to the Government of Australia. 1. Collated existing data (relating to: soils, climate, topography, natural resources, remotely sensed, of various formats: reports, spatial vector, spatial raster etc). 2. Selection of additional soil and land attribute site data locations by a conditioned Latin hypercube statistical sampling method applied across the covariate data space. 3. Fieldwork was carried out to collect new attribute data, soil samples for analysis and build an understanding of geomorphology and landscape processes. 4. Database analysis was performed to extract the data to specific selection criteria required for the attribute to be modelled. 5. The R statistical programming environment was used for the attribute computing. Models were built from selected input data and covariate data using predictive learning from a Random Forest approach implemented in the ranger R package. 6. Create AWC to 60cm Digital Soil Mapping (DSM) attribute raster dataset. DSM data is a geo-referenced dataset, generated from field observations and laboratory data, coupled with environmental covariate data through quantitative relationships. It applies pedometrics - the use of mathematical and statistical models that combine information from soil observations with information contained in correlated environmental variables, remote sensing images and some geophysical measurements. 7. Companion predicted reliability data was produced from the 500 individual Random Forest attribute models created. 8. QA Quality assessment of this DSM attribute data was conducted by three methods. Method 1: Statistical (quantitative) method of the model and input data. Testing the quality of the DSM models was carried out using data withheld from model computations and expressed as OOB and R squared results, giving an estimate of the reliability of the model predictions. These results are supplied. Method 2: Statistical (quantitative) assessment of the spatial attribute output data presented as a raster of the attributes “reliability”. This used the 500 individual trees of the attributes RF models to generate 500 datasets of the attribute to estimate model reliability for each attribute. For continuous attributes the method for estimating reliability is the Coefficient of Variation. This data is supplied. Method 3: Collecting independent external validation site data combined with on-ground expert (qualitative) examination of outputs during validation field trips. Across each of the study areas a two week validation field trip was conducted using a new validation site set which was produced by a random sampling design based on conditioned Latin Hypercube sampling using the reliability data of the attribute. The modelled DSM attribute value was assessed against the actual on-ground value. These results are published in the report cited in this metadata record.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
List of all 81 selected documents.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the field of soil mechanics, especially in transportation and environmental geotechnics, the use of machine learning (ML) techniques has emerged as a powerful tool for predicting and understanding the compressive strength behavior of soils especially graded ones. This is to overcome the sophisticated equipment, laboratory space and cost needs utilized in multiple experiments on the treatment of soils for environmental geotechnics systems. This present study explores the application of machine learning (ML) techniques, namely Genetic Programming (GP), Artificial Neural Networks (ANN), Evolutionary Polynomial Regression (EPR), and the Response Surface Methodology in predicting the unconfined compressive strength (UCS) of soil-lime mixtures. This was for purposes of subgrade and landfill liner design and construction. By utilizing input variables such as Gravel, Sand, Silt, Clay, and Lime contents (G, S, M, C, L), the models forecasted the strength values after 7 and 28 days of curing. The accuracy of the developed models was compared, revealing that both ANN and EPR achieved a similar level of accuracy for UCS after 7 days, while the GP model performed slightly lower. The complexity of the formula required for predicting UCS after 28 days resulted in decreased accuracy. The ANN and EPR models achieved accuracies of 85% and 82%, with R2 of 0.947 and 0.923, and average error of 0.15 and 0.18, respectively, while the GP model exhibited a lower accuracy of 66.0%. Conversely, the RSM produced models for the UCS with predicted R2 of more than 98% and 99%, for the 7- and 28- day curing regimes, respectively. The RSM also produced adequate precision in modelling UCS of more than 14% against the standard 7%. All input factors were found to have almost equal importance, except for the lime content (L), which had an average influence. This shows the importance of soil gradation in the design and construction of subgrade and landfill liners. This research further demonstrates the potential of ML techniques for predicting the strength of lime reconstituted G-S-M-C graded soils and provides valuable insights for engineering applications in exact and sustainable subgrade and liner designs, construction and performance monitoring and rehabilitation of the constructed civil engineering infrastructure.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PAWC to 150cm is one of 18 attributes of soils chosen to underpin the land suitability assessment of the Northern Australia Water Resource Assessment (NAWRA) through the digital soil mapping process (DSM). PAWC (plant available water capacity) indicates the ability of a soil to retain and supply water for plant growth. This PAWC raster data represents a modelled dataset of PAWC to 150cm (mm of water to 150cm of soil depth) and is derived from analysed site data, spline calculations and environmental covariates. PAWC is a parameter used in land suitability assessments for rainfed cropping and for water use efficiency in irrigated land uses. This raster data provides improved soil information used to identify opportunities and promote detailed investigation for a range of sustainable regional development options and was created within the ‘Land Suitability’ activity of the CSIRO NAWRA. A companion dataset and statistics reflecting reliability of this data are also provided and can be found described in the lineage section of this metadata record. Processing information is supplied in ranger R scripts and attributes were modelled using a Random Forest approach. The DSM process is described in the CSIRO NAWRA published report ‘Digital soil mapping of the Fitzroy, Darwin and Mitchell catchments. A technical report from the CSIRO Northern Australia Water Resource Assessment to the Government of Australia'. The land suitability assessment this dataset underpins is described in the CSIRO NAWRA published report ‘Land suitability of the Fitzroy, Darwin and Mitchell catchments. A technical report from the CSIRO Northern Australia Water Resource Assessment to the Government of Australia'. Lineage: This PAWC to 150cm dataset has been generated from a range of inputs and processing steps. Following is an overview. For more information refer to the CSIRO NAWRA published reports and in particular 'Digital soil mapping of the Fitzroy, Darwin and Mitchell catchments. A technical report from the CSIRO Northern Australia Water Resource Assessment, part of the National Water Infrastructure Development Fund: Water Resource Assessments. CSIRO, Australia 2018'. 1. Collated existing data (relating to: soils, climate, topography, natural resources, remotely sensed, of various formats: reports, spatial vector, spatial raster etc). 2. Selection of additional soil and land attribute site data locations by a conditioned Latin hypercube statistical sampling method applied across the covariate data space. 3. Fieldwork was carried out to collect new attribute data, soil samples for analysis and build an understanding of geomorphology and landscape processes. 4. Database analysis was performed to extract the data to specific selection criteria required for the attribute to be modelled. 5. The R statistical programming environment was used for the attribute computing. Models were built from selected input data and covariate data using predictive learning from a Random Forest approach implemented in the ranger R package. 6. Create PAWC to 150cm Digital Soil Mapping (DSM) attribute raster dataset. DSM data is a geo-referenced dataset, generated from field observations and laboratory data, coupled with environmental covariate data through quantitative relationships. It applies pedometrics - the use of mathematical and statistical models that combine information from soil observations with information contained in correlated environmental variables, remote sensing images and some geophysical measurements. 7. Companion predicted reliability data was produced from the 500 individual Random Forest attribute models created. 8. QA Quality assessment of this DSM attribute data was conducted by three methods. Method 1: Statistical (quantitative) method of the model and input data. Testing the quality of the DSM models was carried out using data withheld from model computations and expressed as OOB and R squared results, giving an estimate of the reliability of the model predictions. These results are supplied. Method 2: Statistical (quantitative) assessment of the spatial attribute output data presented as a raster of the attributes “reliability”. This used the 500 individual trees of the attributes RF models to generate 500 datasets of the attribute to estimate model reliability for each attribute. For continuous attributes the method for estimating reliability is the Coefficient of Variation. This data is supplied. Method 3: Collecting independent external validation site data combined with on-ground expert (qualitative) examination of outputs during validation field trips. Across each of the study areas a two week validation field trip was conducted using a new validation site set which was produced by a random sampling design based on conditioned Latin Hypercube sampling using the reliability data of the attribute. The modelled DSM attribute value was assessed against the actual on-ground value. These results are published in the report cited in this metadata record.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
AWC to 60cm is one of 18 attributes of soils chosen to underpin the land suitability assessment of the Roper River Water Resource Assessment (ROWRA) through the digital soil mapping process (DSM). AWC (available water capacity) indicates the ability of a soil to retain and supply water for plant growth. This AWC raster data represents a modelled dataset of AWC to 60cm (mm of water to 60cm of soil depth) and is derived from analysed site data, spline calculations and environmental covariates. AWC is a parameter used in land suitability assessments for rainfed cropping and for water use efficiency in irrigated land uses. This raster data provides improved soil information used to underpin and identify opportunities and promote detailed investigation for a range of sustainable regional development options and was created within the ‘Land Suitability’ activity of the CSIRO ROWRA. A companion dataset and statistics reflecting reliability of this data are also provided and can be found described in the lineage section of this metadata record. Processing information is supplied in ranger R scripts and attributes were modelled using a Random Forest approach. The DSM process is described in the CSIRO ROWRA published report ‘Soils and land suitability for the Roper catchment, Northern Territory’. A technical report from the CSIRO Roper River Water Resource Assessment to the Government of Australia. The Roper River Water Resource Assessment provides a comprehensive overview and integrated evaluation of the feasibility of aquaculture and agriculture development in the Roper catchment NT as well as the ecological, social and cultural (indigenous water values, rights and aspirations) impacts of development. Lineage: This AWC to 60cm dataset has been generated from a range of inputs and processing steps. Following is an overview. For more information refer to the CSIRO ROWRA published reports and in particular ' Soils and land suitability for the Roper catchment, Northern Territory’. A technical report from the CSIRO Roper River Water Resource Assessment to the Government of Australia. 1. Collated existing data (relating to: soils, climate, topography, natural resources, remotely sensed, of various formats: reports, spatial vector, spatial raster etc). 2. Selection of additional soil and land attribute site data locations by a conditioned Latin hypercube statistical sampling method applied across the covariate data space. 3. Fieldwork was carried out to collect new attribute data, soil samples for analysis and build an understanding of geomorphology and landscape processes. 4. Database analysis was performed to extract the data to specific selection criteria required for the attribute to be modelled. 5. The R statistical programming environment was used for the attribute computing. Models were built from selected input data and covariate data using predictive learning from a Random Forest approach implemented in the ranger R package. 6. Create AWC to 60cm Digital Soil Mapping (DSM) attribute raster dataset. DSM data is a geo-referenced dataset, generated from field observations and laboratory data, coupled with environmental covariate data through quantitative relationships. It applies pedometrics - the use of mathematical and statistical models that combine information from soil observations with information contained in correlated environmental variables, remote sensing images and some geophysical measurements. 7. Companion predicted reliability data was produced from the 500 individual Random Forest attribute models created. 8. QA Quality assessment of this DSM attribute data was conducted by three methods. Method 1: Statistical (quantitative) method of the model and input data. Testing the quality of the DSM models was carried out using data withheld from model computations and expressed as OOB and R squared results, giving an estimate of the reliability of the model predictions. These results are supplied. Method 2: Statistical (quantitative) assessment of the spatial attribute output data presented as a raster of the attributes “reliability”. This used the 500 individual trees of the attributes RF models to generate 500 datasets of the attribute to estimate model reliability for each attribute. For continuous attributes the method for estimating reliability is the Coefficient of Variation. This data is supplied. Method 3: Collecting independent external validation site data combined with on-ground expert (qualitative) examination of outputs during validation field trips. Across each of the study areas a two week validation field trip was conducted using a new validation site set which was produced by a random sampling design based on conditioned Latin Hypercube sampling using the reliability data of the attribute. The modelled DSM attribute value was assessed against the actual on-ground value. These results are published in the report cited in this metadata record.