https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Data Labeling Solution and Services market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) and machine learning (ML) across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated market value of $70 billion by 2033. This significant expansion is fueled by the burgeoning need for high-quality training data to enhance the accuracy and performance of AI models. Key growth drivers include the expanding application of AI in various industries like automotive (autonomous vehicles), healthcare (medical image analysis), and financial services (fraud detection). The increasing availability of diverse data types (text, image/video, audio) further contributes to market growth. However, challenges such as the high cost of data labeling, data privacy concerns, and the need for skilled professionals to manage and execute labeling projects pose certain restraints on market expansion. Segmentation by application (automotive, government, healthcare, financial services, others) and data type (text, image/video, audio) reveals distinct growth trajectories within the market. The automotive and healthcare sectors currently dominate, but the government and financial services segments are showing promising growth potential. The competitive landscape is marked by a mix of established players and emerging startups. Companies like Amazon Mechanical Turk, Appen, and Labelbox are leading the market, leveraging their expertise in crowdsourcing, automation, and specialized data labeling solutions. However, the market shows strong potential for innovation, particularly in the development of automated data labeling tools and the expansion of services into niche areas. Regional analysis indicates strong market penetration in North America and Europe, driven by early adoption of AI technologies and robust research and development efforts. However, Asia-Pacific is expected to witness significant growth in the coming years fueled by rapid technological advancements and a rising demand for AI solutions. Further investment in R&D focused on automation, improved data security, and the development of more effective data labeling methodologies will be crucial for unlocking the full potential of this rapidly expanding market.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The open-source data labeling tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in machine learning and artificial intelligence applications. The market's expansion is fueled by several factors: the rising adoption of AI across various sectors (including IT, automotive, healthcare, and finance), the need for cost-effective data annotation solutions, and the inherent flexibility and customization offered by open-source tools. While cloud-based solutions currently dominate the market due to scalability and accessibility, on-premise deployments remain significant, particularly for organizations with stringent data security requirements. The market's growth is further propelled by advancements in automation and semi-supervised learning techniques within data labeling, leading to increased efficiency and reduced annotation costs. Geographic distribution shows a strong concentration in North America and Europe, reflecting the higher adoption of AI technologies in these regions; however, Asia-Pacific is emerging as a rapidly growing market due to increasing investment in AI and the availability of a large workforce for data annotation. Despite the promising outlook, certain challenges restrain market growth. The complexity of implementing and maintaining open-source tools, along with the need for specialized technical expertise, can pose barriers to entry for smaller organizations. Furthermore, the quality control and data governance aspects of open-source annotation require careful consideration. The potential for data bias and the need for robust validation processes necessitate a strategic approach to ensure data accuracy and reliability. Competition is intensifying with both established and emerging players vying for market share, forcing companies to focus on differentiation through innovation and specialized functionalities within their tools. The market is anticipated to maintain a healthy growth trajectory in the coming years, with increasing adoption across diverse sectors and geographical regions. The continued advancements in automation and the growing emphasis on data quality will be key drivers of future market expansion.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The data collection and labeling market is experiencing robust growth, fueled by the escalating demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $15 billion in 2025, is projected to achieve a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033), reaching approximately $75 billion by 2033. This expansion is primarily driven by the increasing adoption of AI across diverse sectors, including healthcare (medical image analysis, drug discovery), automotive (autonomous driving systems), finance (fraud detection, risk assessment), and retail (personalized recommendations, inventory management). The rising complexity of AI models and the need for more diverse and nuanced datasets are significant contributing factors to this growth. Furthermore, advancements in data annotation tools and techniques, such as active learning and synthetic data generation, are streamlining the data labeling process and making it more cost-effective. However, challenges remain. Data privacy concerns and regulations like GDPR necessitate robust data security measures, adding to the cost and complexity of data collection and labeling. The shortage of skilled data annotators also hinders market growth, necessitating investments in training and upskilling programs. Despite these restraints, the market’s inherent potential, coupled with ongoing technological advancements and increased industry investments, ensures sustained expansion in the coming years. Geographic distribution shows strong concentration in North America and Europe initially, but Asia-Pacific is poised for rapid growth due to increasing AI adoption and the availability of a large workforce. This makes strategic partnerships and global expansion crucial for market players aiming for long-term success.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context: Exception handling (EH) bugs stem from incorrect usage of exception handling mechanisms (EHMs) and often incur severe consequences (e.g., system downtime, data loss, and security risk). Tracking EH bugs is particularly relevant for contemporary systems (e.g., cloud- and AI-based systems), in which the software's sophisticated logic is an additional threat to the correct use of the EHM. On top of that, bug reporters seldom can tag EH bugs --- since it may require an encompassing knowledge of the software's EH strategy. Surprisingly, to the best of our knowledge, there is no automated procedure to identify EH bugs from report descriptions.Objective: First, we aim to evaluate the extent to which Natural Language Processing (NLP) and Machine Learning (ML) can be used to reliably label EH bugs using the text fields from bug reports (e.g., summary, description, and comments). Second, we aim to provide a reliably labeled dataset that the community can use in future endeavors. Overall, we expect our work to raise the community's awareness regarding the importance of EH bugs.Method: We manually analyzed 4,516 bug reports from the four main components of Apache’s Hadoop project, out of which we labeled ~20% (943) as EH bugs. We also labeled 2,584 non-EH bugs analyzing their bug-fixing code and creating a dataset composed of 7,100 bug reports. Then, we used word embedding techniques (Bag-of-Words and TF-IDF) to summarize the textual fields of bug reports. Subsequently, we used these embeddings to fit five classes of ML methods and evaluate them on unseen data. We also evaluated a pre-trained transformer-based model using the complete textual fields. We have also evaluated whether considering only EH keywords is enough to achieve high predictive performance.Results: Our results show that using a pre-trained DistilBERT with a linear layer trained with our proposed dataset can reasonably label EH bugs, achieving ROC-AUC scores of up to 0.88. The combination of NLP and ML traditional techniques achieved ROC-AUC scores of up to 0.74 and recall up to 0.56. As a sanity check, we also evaluate methods using embeddings extracted solely from keywords. Considering ROC-AUC as the primary concern, for the majority of ML methods tested, the analysis suggests that keywords alone are not sufficient to characterize reports of EH bugs, although this can change based on other metrics (such as recall and precision) or ML methods (e.g., Random Forest).Conclusions: To the best of our knowledge, this is the first study addressing the problem of automatic labeling of EH bugs. Based on our results, we can conclude that the use of ML techniques, specially transformer-base models, sounds promising to automate the task of labeling EH bugs. Overall, we hope (i) that our work will contribute towards raising awareness around EH bugs; and (ii) that our (publicly available) dataset will serve as a benchmarking dataset, paving the way for follow-up works. Additionally, our findings can be used to build tools that help maintainers flesh out EH bugs during the triage process.
https://www.nist.gov/open/licensehttps://www.nist.gov/open/license
The open dataset, software, and other files accompanying the manuscript "An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models," submitted for publication to Integrated Materials and Manufacturing Innovations. Machine learning and autonomy are increasingly prevalent in materials science, but existing models are often trained or tuned using idealized data as absolute ground truths. In actual materials science, "ground truth" is often a matter of interpretation and is more readily determined by consensus. Here we present the data, software, and other files for a study using as-obtained diffraction data as a test case for evaluating the performance of machine learning models in the presence of differing expert opinions. We demonstrate that experts with similar backgrounds can disagree greatly even for something as intuitive as using diffraction to identify the start and end of a phase transformation. We then use a logarithmic likelihood method to evaluate the performance of machine learning models in relation to the consensus expert labels and their variance. We further illustrate this method's efficacy in ranking a number of state-of-the-art phase mapping algorithms. We propose a materials data challenge centered around the problem of evaluating models based on consensus with uncertainty. The data, labels, and code used in this study are all available online at data.gov, and the interested reader is encouraged to replicate and improve the existing models or to propose alternative methods for evaluating algorithmic performance.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The AI Data Labeling Solutions market is experiencing robust growth, driven by the increasing demand for high-quality data to train and improve the accuracy of AI and machine learning models. The market size in 2025 is estimated at $2.5 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033. This substantial growth is fueled by several key factors. The proliferation of AI applications across diverse sectors like healthcare, automotive, and finance necessitates extensive data labeling. The rise of sophisticated AI algorithms that require larger and more complex datasets is another major driver. Cloud-based solutions are gaining significant traction due to their scalability, cost-effectiveness, and ease of access, contributing significantly to market expansion. However, challenges remain, including data privacy concerns, the need for skilled data labelers, and the potential for bias in labeled data. These restraints need to be addressed to ensure the sustainable and responsible growth of the market. The segmentation of the market reveals a diverse landscape. Cloud-based solutions currently dominate, reflecting the industry shift toward flexible and scalable data processing. Application-wise, the IT sector is currently the largest consumer, followed by automotive and healthcare. However, growth in financial services and other sectors indicates the broadening application of AI data labeling solutions. Key players in the market are constantly innovating to improve accuracy, efficiency, and cost-effectiveness, leading to a competitive and rapidly evolving market. The regional distribution shows strong market presence in North America and Europe, driven by early adoption of AI technologies and a well-established technological infrastructure. Asia-Pacific is also demonstrating significant growth potential due to increasing technological advancements and investments in AI research and development. The forecast period of 2025-2033 presents substantial opportunities for market expansion, contingent upon addressing the challenges and leveraging emerging technologies.
These images and associated binary labels were collected from collaborators across multiple universities to serve as a diverse representation of biomedical images of vessel structures, for use in the training and validation of machine learning tools for vessel segmentation. The dataset contains images from a variety of imaging modalities, at different resolutions, using difference sources of contrast and featuring different organs/ pathologies. This data was use to train, test and validated a foundational model for 3D vessel segmentation, tUbeNet, which can be found on github. The paper descripting the training and validation of the model can be found here. Filenames are structured as follows: Data - [Modality][species Organ][resolution].tif Labels - [Modality][species Organ][resolution]labels.tif Sub-volumes of larger dataset - [Modality][species Organ]_subvolume[dimensions in pixels].tif Manual labelling of blood vessels was carried out using Amira (2020.2, Thermo-Fisher, UK). Training data: opticalHREM_murineLiver_2.26x2.26x1.75um.tif: A high resolution episcopic microscopy (HREM) dataset, acquired in house by staining a healthy mouse liver with Eosin B and imaged using a standard HREM protocol. NB: 25% of this image volume was withheld from training, for use as test data. CT_murineTumour_20x20x20um.tif: X-ray microCT images of a microvascular cast, taken from a subcutaneous mouse model of colorectal cancer (acquired in house). NB: 25% of this image volume was withheld from training, for use as test data. RSOM_murineTumour_20x20um.tif: Raster-Scanning Optoacoustic Mesoscopy (RSOM) data from a subcutaneous tumour model (provided by Emma Brown, Bohndiek Group, University of Cambridge). The image data has undergone filtering to reduce the background (Brown et al., 2019). OCTA_humanRetina_24x24um.tif: retinal angiography data obtained using Optical Coherence Tomography Angiography (OCT-A) (provided by Dr Ranjan Rajendram, Moorfields Eye Hospital). Test data: MRI_porcineLiver_0.9x0.9x5mm.tif: T1-weighted Balanced Turbo Field Echo Magnetic Resonance Imaging (MRI) data from a machine-perfused porcine liver, acquired in-house. Test Data MFHREM_murineTumourLectin_2.76x2.76x2.61um.tif: a subcutaneous colorectal tumour mouse model was imaged in house using Multi-fluorescence HREM in house, with Dylight 647 conjugated lectin staining the vasculature (Walsh et al., 2021). The image data has been processed using an asymmetric deconvolution algorithm described by Walsh et al., 2020. NB: A sub-volume of 480x480x640 voxels was manually labelled (MFHREM_murineTumourLectin_subvolume480x480x640.tif). MFHREM_murineBrainLectin_0.85x0.85x0.86um.tif: an MF-HREM image of the cortex of a mouse brain, stained with Dylight-647 conjugated lectin, was acquired in house (Walsh et al., 2021). The image data has been downsampled and processed using an asymmetric deconvolution algorithm described by Walsh et al., 2020. NB: A sub-volume of 1000x1000x99 voxels was manually labelled. This sub-volume is provided at full resolution and without preprocessing (MFHREM_murineBrainLectin_subvol_0.57x0.57x0.86um.tif). 2Photon_murineOlfactoryBulbLectin_0.2x0.46x5.2um.tif: two-photon data of mouse olfactory bulb blood vessels, labelled with sulforhodamine 101, was kindly provided by Yuxin Zhang at the Sensory Circuits and Neurotechnology Lab, the Francis Crick Institute (Bosch et al., 2022). NB: A sub-volume of 500x500x79 voxel was manually labelled (2Photon_murineOlfactoryBulbLectin_subvolume500x500x79.tif). References: Bosch, C., Ackels, T., Pacureanu, A., Zhang, Y., Peddie, C. J., Berning, M., Rzepka, N., Zdora, M. C., Whiteley, I., Storm, M., Bonnin, A., Rau, C., Margrie, T., Collinson, L., & Schaefer, A. T. (2022). Functional and multiscale 3D structural investigation of brain tissue through correlative in vivo physiology, synchrotron microtomography and volume electron microscopy. Nature Communications 2022 13:1, 13(1), 1–16. https://doi.org/10.1038/s41467-022-30199-6 Brown, E., Brunker, J., & Bohndiek, S. E. (2019). Photoacoustic imaging as a tool to probe the tumour microenvironment. DMM Disease Models and Mechanisms, 12(7). https://doi.org/10.1242/DMM.039636 Walsh, C., Holroyd, N. A., Finnerty, E., Ryan, S. G., Sweeney, P. W., Shipley, R. J., & Walker-Samuel, S. (2021). Multifluorescence High-Resolution Episcopic Microscopy for 3D Imaging of Adult Murine Organs. Advanced Photonics Research, 2(10), 2100110. https://doi.org/10.1002/ADPR.202100110 Walsh, C., Holroyd, N., Shipley, R., & Walker-Samuel, S. (2020). Asymmetric Point Spread Function Estimation and Deconvolution for Serial-Sectioning Block-Face Imaging. Communications in Computer and Information Science, 1248 CCIS, 235–249. https://doi.org/10.1007/978-3-030-52791-4_19
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The MLCommons Dollar Street Dataset is a collection of images of everyday household items from homes around the world that visually captures socioeconomic diversity of traditionally underrepresented populations. It consists of public domain data, licensed for academic, commercial and non-commercial usage, under CC-BY and CC-BY-SA 4.0. The dataset was developed because similar datasets lack socioeconomic metadata and are not representative of global diversity.
This is a subset of the original dataset that can be used for multiclass classification with 10 categories. It is designed to be used in teaching, similar to the widely used, but unlicensed CIFAR-10 dataset.
These are the preprocessing steps that were performed:
Only take examples with one imagenet_synonym label
Use only examples with the 10 most frequently occuring labels
Downscale images to 64 x 64 pixels
Split data in train and test
Store as numpy array
This is the label mapping:
Category label
day bed 0
dishrag 1
plate 2
running shoe 3
soap dispenser 4
street sign 5
table lamp 6
tile roof 7
toilet seat 8
washing machine 9
Checkout this notebook to see how the subset was created.
The original dataset was downloaded from https://www.kaggle.com/datasets/mlcommons/the-dollar-street-dataset. See https://mlcommons.org/datasets/dollar-street/ for more information.
Remote cameras (“trail cameras”) are a popular tool for non-invasive, continuous wildlife monitoring, and as they become more prevalent in wildlife research, machine learning (ML) is increasingly used to automate or accelerate the labor-intensive process of labelling (i.e., tagging) photos. Human-machine hybrid tagging approaches have been shown to greatly increase tagging efficiency (i.e., time to tag a single image). However, those potential increases hinge on the extent to which an ML model makes correct vs. incorrect predictions. We performed an experiment using a ML model that produces bounding boxes around animals, people, and vehicles in remote camera imagery (MegaDetector), to consider the impact of a ML model’s performance on its ability to accelerate human labeling. Six participants tagged trail camera images collected from 12 sites in Vermont and Maine, USA (January-September 2022) using three tagging methods (one with ML bounding box assistance and two without assistance).
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global data labeling tools market is projected to reach a value of USD 12.19 billion by 2033, expanding at a CAGR of 31.9% during the forecast period of 2025-2033. The growing volume of unstructured data, the increasing adoption of AI and ML technologies, and the need for high-quality labeled data for training machine learning models are the key factors driving market growth. The market is segmented by type into cloud-based and on-premises solutions, with the cloud-based segment holding a dominant share due to its scalability, cost-effectiveness, and flexibility. By application, the market is divided into IT, automotive, government, healthcare, financial services, retail, and others. The IT segment is expected to account for the largest share during the forecast period as businesses increasingly adopt AI and ML technologies to automate their processes and gain insights from data.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The AI data labeling solutions market is experiencing robust growth, driven by the increasing demand for high-quality data to train and improve the accuracy of artificial intelligence algorithms. The market size in 2025 is estimated at $5 billion, exhibiting a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033. This significant expansion is fueled by several key factors. The proliferation of AI applications across diverse sectors, including automotive, healthcare, and finance, necessitates vast amounts of labeled data. Cloud-based solutions are gaining prominence due to their scalability, cost-effectiveness, and accessibility. Furthermore, advancements in data annotation techniques and the emergence of specialized AI data labeling platforms are contributing to market expansion. However, challenges such as data privacy concerns, the need for highly skilled professionals, and the complexities of handling diverse data formats continue to restrain market growth to some extent. The market segmentation reveals that the cloud-based solutions segment is expected to dominate due to its inherent advantages over on-premise solutions. In terms of application, the automotive sector is projected to exhibit the fastest growth, driven by the increasing adoption of autonomous driving technology and advanced driver-assistance systems (ADAS). The healthcare industry is also a major contributor, with the rise of AI-powered diagnostic tools and personalized medicine driving demand for accurate medical image and data labeling. Geographically, North America currently holds a significant market share, but the Asia-Pacific region is poised for rapid growth owing to increasing investments in AI and technological advancements. The competitive landscape is marked by a diverse range of established players and emerging startups, fostering innovation and competition within the market. The continued evolution of AI and its integration across various industries ensures the continued expansion of the AI data labeling solution market in the coming years.
https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11588/DATA/LWN9XEhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.11588/DATA/LWN9XE
This repository contains code for reproducing experiments done in Marasovic and Frank (2018). Paper abstract: For over a decade, machine learning has been used to extract opinion-holder-target structures from text to answer the question "Who expressed what kind of sentiment towards what?". Recent neural approaches do not outperform the state-of-the-art feature-based models for Opinion Role Labeling (ORL). We suspect this is due to the scarcity of labeled training data and address this issue using different multi-task learning (MTL) techniques with a related task which has substantially more data, i.e. Semantic Role Labeling (SRL). We show that two MTL models improve significantly over the single-task model for labeling of both holders and targets, on the development and the test sets. We found that the vanilla MTL model, which makes predictions using only shared ORL and SRL features, performs the best. With deeper analysis, we determine what works and what might be done to make further improvements for ORL. Data for ORL Download MPQA 2.0 corpus. Check mpqa2-pytools for example usage. Splits can be found in the datasplit folder. Data for SRL The data is provided by: CoNLL-2005 Shared Task, but the original words are from the Penn Treebank dataset, which is not publicly available. How to train models? python main.py --adv_coef 0.0 --model fs --exp_setup_id new --n_layers_orl 0 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.0 --model html --exp_setup_id new --n_layers_orl 1 --n_layers_shared 2 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.0 --model sp --exp_setup_id new --n_layers_orl 3 --begin_fold 0 --end_fold 4 python main.py --adv_coef 0.1 --model asp --exp_setup_id prior --n_layers_orl 3 --begin_fold 0 --end_fold 10
Overview This dataset is a collection of 6,000+ images of mixed race human face with various expressions & emotions that are ready to use for optimizing the accuracy of computer vision models. All of the contents is sourced from PIXTA's stock library of 100M+ Asian-featured images and videos. PIXTA is the largest platform of visual materials in the Asia Pacific region offering fully-managed services, high quality contents and data, and powerful tools for businesses & organisations to enable their creative and machine learning projects.
The data set This dataset contains 6,000+ images of face emotion. Each data set is supported by both AI and human review process to ensure labelling consistency and accuracy. Contact us for more custom datasets.
About PIXTA PIXTASTOCK is the largest Asian-featured stock platform providing data, contents, tools and services since 2005. PIXTA experiences 15 years of integrating advanced AI technology in managing, curating, processing over 100M visual materials and serving global leading brands for their creative and data demands. Visit us at https://www.pixta.ai/ or contact via our email contact@pixta.ai."
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Bach Chorales Multiple Chord Labels dataset was proposed in our DLfM (Digital Library for Musicology) 2020 conference paper: "Automatic Chord Labelling: A Figured Bass Approach". There are four parallel tracks of chord labels, produced by each of the four rule-based algorithms (Algorithms A, B, C, and D). The chord labels of each algorithm can be found in each folder, where the music (Bach chorales) and annotations are presented in the MusicXML format. Overall, there are 120 Bach chorales (or 123 since there are three chorales with two versions) annotated this way.
If you make use of BCMCL, please cite the following publication:
@inproceedings{ju_automatic_2020, title = {Automatic {Chord} {Labelling}: {A} {Figured} {Bass} {Approach}}, shorttitle = {Automatic {Chord} {Labelling}}, booktitle = {Proceedings of the 7th {International} {Conference} on {Digital} {Libraries} for {Musicology}}, author = {Ju, Yaolong and Margot, Sylvain and McKay, Cory and Fujinaga, Ichiro}, year = {2020}, pages = {27--31}, }
Please email to yaolong.ju@mail.mcgill.ca if you have any questions.
LandCoverNet is a global annual land cover classification training dataset with labels for the multi-spectral satellite imagery from Sentinel-1, Sentinel-2 and Landsat-8 missions in 2018. LandCoverNet Asia contains data across Asia, which accounts for ~31% of the global dataset. Each pixel is identified as one of the seven land cover classes based on its annual time series. These classes are water, natural bare ground, artificial bare ground, woody vegetation, cultivated vegetation, (semi) natural vegetation, and permanent snow/ice.
There are a total of 2753 image chips of 256 x 256 pixels in LandCoverNet South America V1.0 spanning 92 tiles. Each image chip contains temporal observations from the following satellite products with an annual class label, all stored in raster format (GeoTIFF files):
* Sentinel-1 ground range distance (GRD) with radiometric calibration and orthorectification at 10m spatial resolution
* Sentinel-2 surface reflectance product (L2A) at 10m spatial resolution
* Landsat-8 surface reflectance product from Collection 2 Level-2
Radiant Earth Foundation designed and generated this dataset with a grant from Schmidt Futures with additional support from NASA ACCESS, Microsoft AI for Earth and in kind technology support from Sinergise.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Consisting of six multi-label datasets from the UCI Machine Learning repository.
Each dataset contains missing values which have been artificially added at the following rates: 5, 10, 15, 20, 25, and 30%. The “amputation” was performed using the “Missing Completely at Random” mechanism.
File names are represented as follows:
amp_DB_MR.arff
where:
DB = original dataset;
MR = missing rate.
For more details, please read:
IEEE Access article (in review process)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains tile imagery from the OpenStreetMap project alongside label masks for buildings from OpenStreetMap. Besides the original clean label set, additional noisy label sets for random noise, removed and added buildings are provided.
The purpose of this dataset is to provide training data for analysing the impact of noisy labels on the performance of models for semantic segmentation in Earth observation.
The code for downloading and creating the datasets as well as for performing some preliminary analyses is also provided, however it is necessary to have access to a tile server where OpenStreetMap tiles can be downloaded in sufficient amounts.
To reproduce the dataset and perform analysis on it, do the following:
Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.
MusicNet is a collection of 330 freely-licensed classical music recordings, together with over 1 million annotated labels indicating the precise time of each note in every recording, the instrument that plays each note, and the note's position in the metrical structure of the composition. The labels are acquired from musical scores aligned to recordings by dynamic time warping. The labels are verified by trained musicians; we estimate a labeling error rate of 4%. We offer the MusicNet labels to the machine learning and music communities as a resource for training models and a common benchmark for comparing results.
LandCoverNet is a global annual land cover classification training dataset with labels for the multi-spectral satellite imagery from Sentinel-1, Sentinel-2 and Landsat-8 missions in 2018. LandCoverNet North America contains data across North America, which accounts for ~13% of the global dataset. Each pixel is identified as one of the seven land cover classes based on its annual time series. These classes are water, natural bare ground, artificial bare ground, woody vegetation, cultivated vegetation, (semi) natural vegetation, and permanent snow/ice.
There are a total of 1561 image chips of 256 x 256 pixels in LandCoverNet North America V1.0 spanning 40 tiles. Each image chip contains temporal observations from the following satellite products with an annual class label, all stored in raster format (GeoTIFF files):
* Sentinel-1 ground range distance (GRD) with radiometric calibration and orthorectification at 10m spatial resolution
* Sentinel-2 surface reflectance product (L2A) at 10m spatial resolution
* Landsat-8 surface reflectance product from Collection 2 Level-2
Radiant Earth Foundation designed and generated this dataset with a grant from Schmidt Futures with additional support from NASA ACCESS, Microsoft AI for Earth and in kind technology support from Sinergise.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global Data Labeling Solution and Services market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) and machine learning (ML) across diverse sectors. The market, estimated at $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated market value of $70 billion by 2033. This significant expansion is fueled by the burgeoning need for high-quality training data to enhance the accuracy and performance of AI models. Key growth drivers include the expanding application of AI in various industries like automotive (autonomous vehicles), healthcare (medical image analysis), and financial services (fraud detection). The increasing availability of diverse data types (text, image/video, audio) further contributes to market growth. However, challenges such as the high cost of data labeling, data privacy concerns, and the need for skilled professionals to manage and execute labeling projects pose certain restraints on market expansion. Segmentation by application (automotive, government, healthcare, financial services, others) and data type (text, image/video, audio) reveals distinct growth trajectories within the market. The automotive and healthcare sectors currently dominate, but the government and financial services segments are showing promising growth potential. The competitive landscape is marked by a mix of established players and emerging startups. Companies like Amazon Mechanical Turk, Appen, and Labelbox are leading the market, leveraging their expertise in crowdsourcing, automation, and specialized data labeling solutions. However, the market shows strong potential for innovation, particularly in the development of automated data labeling tools and the expansion of services into niche areas. Regional analysis indicates strong market penetration in North America and Europe, driven by early adoption of AI technologies and robust research and development efforts. However, Asia-Pacific is expected to witness significant growth in the coming years fueled by rapid technological advancements and a rising demand for AI solutions. Further investment in R&D focused on automation, improved data security, and the development of more effective data labeling methodologies will be crucial for unlocking the full potential of this rapidly expanding market.