The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Wage and salary workers: 65 years and over: Native born (LEU0257373100A) from 2005 to 2024 about 65 years +, native born, full-time, salaries, workers, wages, employment, and USA.
This dataset combines automation probability data with a breakdown of the number of jobs and salary in each occupation by state within the USA. Automation probability was acquired from the work of Carl Benedikt Freyand Michael A. Osborne; State employment data is from the Bureau of Labor Statistics. Note that for simplicity of analysis, all jobs where data was not available or there were less than 10 employees were marked as zero.
If you use this dataset in your research, please credit the authors.
@misc{u.s. bureau of labor statistics, title={Occupational Employment Statistics}, url={https://www.bls.gov/oes/current/oes_nat.htm}, journal={U.S. BUREAU OF LABOR STATISTICS}}
@article{frey_osborne_2017, title={The future of employment: How susceptible are jobs to computerisation?}, volume={114}, DOI={10.1016/j.techfore.2016.08.019}, journal={Technological Forecasting and Social Change}, author={Frey, Carl Benedikt and Osborne, Michael A.}, year={2017}, pages={254–280}}
License was not specified at the source.
Photo by Alex Knight on Unsplash
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Hourly Earnings of All Employees, Total Private (CES0500000003) from Mar 2006 to Jun 2025 about earnings, average, establishment survey, hours, wages, private, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly nominal earnings (second quartile): Wage and salary workers: 16 years and over (LEU0252881500A) from 1979 to 2024 about second quartile, full-time, salaries, workers, earnings, 16 years +, wages, median, employment, and USA.
The Quarterly Census of Employment and Wages (QCEW) Program is a Federal-State cooperative program between the U.S. Department of Labor’s Bureau of Labor Statistics (BLS) and the California EDD’s Labor Market Information Division (LMID). The QCEW program produces a comprehensive tabulation of employment and wage information for workers covered by California Unemployment Insurance (UI) laws and Federal workers covered by the Unemployment Compensation for Federal Employees (UCFE) program. The QCEW program serves as a near census of monthly employment and quarterly wage information by 6-digit industry codes from the North American Industry Classification System (NAICS) at the national, state, and county levels. At the national level, the QCEW program publishes employment and wage data for nearly every NAICS industry. At the state and local area level, the QCEW program publishes employment and wage data down to the 6-digit NAICS industry level, if disclosure restrictions are met. In accordance with the BLS policy, data provided to the Bureau in confidence are used only for specified statistical purposes and are not published. The BLS withholds publication of Unemployment Insurance law-covered employment and wage data for any industry level when necessary to protect the identity of cooperating employers. Data from the QCEW program serve as an important input to many BLS programs. The Current Employment Statistics and the Occupational Employment Statistics programs use the QCEW data as the benchmark source for employment. The UI administrative records collected under the QCEW program serve as a sampling frame for the BLS establishment surveys. In addition, the data serve as an input to other federal and state programs. The Bureau of Economic Analysis (BEA) of the Department of Commerce uses the QCEW data as the base for developing the wage and salary component of personal income. The U.S. Department of Labor’s Employment and Training Administration (ETA) and California's EDD use the QCEW data to administer the Unemployment Insurance program. The QCEW data accurately reflect the extent of coverage of California’s UI laws and are used to measure UI revenues; national, state and local area employment; and total and UI taxable wage trends. The U.S. Department of Labor’s Bureau of Labor Statistics publishes new QCEW data in its County Employment and Wages news release on a quarterly basis. The BLS also publishes a subset of its quarterly data through the Create Customized Tables system, and full quarterly industry detail data at all geographic levels.
VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)
FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations
LAST UPDATED January 2019
DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.
DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html
American Community Survey (2001-2017) http://api.census.gov
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.
Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.
Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.
Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.
In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.
The Current Population Survey (CPS) is a monthly survey of households conducted by the Bureau of Census for the Bureau of Labor Statistics. The earnings data are collected from one-fourth of the CPS total sample of approximately 60,000 households. Data measures usual hourly and weekly earnings of wage and salary workers. All self-employed persons are excluded, regardless of whether their businesses are incorporated. Data represent earnings before taxes and other deductions and include any overtime pay, commissions, or tips usually received. Earnings data are available for all workers, by age, race, Hispanic or Latino ethnicity, sex, occupation, usual full- or part-time status, educational attainment, and other characteristics. Data are published quarterly. More information and details about the data provided can be found at http://www.bls.gov/cps/earnings.htm
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over (LES1252881600Q) from Q1 1979 to Q1 2025 about full-time, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Earnings of females and males employees.’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mpwolke/cusersmarildownloadsearningcsv on 28 January 2022.
--- Dataset description provided by original source is as follows ---
The Bureau of Labor Statistics reported that, in 2013, female full-time workers had median weekly earnings of $706, compared to men's median weekly earnings of $860. Women aged 35 years and older earned 74% to 80% of the earnings of their male counterparts. https://en.wikipedia.org › wiki › Gender_pay_gap_in_the_United_States
What is the gender pay gap 2019? Study after study has identified a persistent gender pay gap. A PayScale report found that women still make only $0.79 for each dollar men make in 2019. A Bureau of Labor Statistics (BLS) analysis discovered that in 2018, median weekly earnings for female full-time wage and salary workers was 81% of men's earnings.Jul 11, 2019 https://www.forbes.com/sites/shaharziv/2019/07/11/gender-pay-gap-bigger-than-you-thnk/#36ca335f7d8a.
Linked through data.gov.au for discoverability and availability. This dataset was originally found on data.gov.au https://data.gov.au/data/dataset/a5776c56-bdde-4643-a3fd-dcc2775d7d7a ***Photo by Samantha Sophia on Unsplash.
Great females scientists: Mileva Maric', Frances "Poppy" Northcut, Hedy Lamarr, Marie Sklodowska Curie and Ada Lovelace. If you don't know them yet, just search on Google.
--- Original source retains full ownership of the source dataset ---
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Wage and salary workers: Millwrights occupations: 16 years and over (LEU0254511600A) from 2000 to 2024 about occupation, full-time, salaries, workers, 16 years +, wages, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employment Cost Index: Wages and Salaries: Private Industry Workers: Manufacturing (ECIMANWAG) from Q1 2001 to Q1 2025 about ECI, salaries, workers, private industries, wages, private, manufacturing, industry, inflation, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Wage and salary workers: Cashiers occupations: 16 years and over (LEU0254497200A) from 2000 to 2024 about cashiers, occupation, full-time, salaries, workers, 16 years +, wages, employment, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China Flow of Funds: Source: Compensation of Labor: Wage & Salary data was reported at 0.000 RMB bn in 2012. This stayed constant from the previous number of 0.000 RMB bn for 2011. China Flow of Funds: Source: Compensation of Labor: Wage & Salary data is updated yearly, averaging 0.000 RMB bn from Dec 1992 (Median) to 2012, with 21 observations. The data reached an all-time high of 0.000 RMB bn in 2012 and a record low of 0.000 RMB bn in 2012. China Flow of Funds: Source: Compensation of Labor: Wage & Salary data remains active status in CEIC and is reported by National Bureau of Statistics. The data is categorized under China Premium Database’s National Accounts – Table CN.AD: Flow of Funds Accounts: Physical Transaction.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Median usual weekly real earnings: Wage and salary workers: 16 years and over: Men (LEU0252881900A) from 1979 to 2024 about full-time, males, salaries, workers, earnings, 16 years +, wages, median, real, employment, and USA.
Average hourly and weekly wage rate, and median hourly and weekly wage rate by North American Industry Classification System (NAICS), type of work, gender, and age group.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Wage and salary workers: Dancers and choreographers occupations: 16 years and over: Men (LEU0254592400A) from 2000 to 2024 about occupation, full-time, males, salaries, workers, 16 years +, wages, employment, and USA.
In 2023, the gross median household income for Asian households in the United States stood at 112,800 U.S. dollars. Median household income in the United States, of all racial and ethnic groups, came out to 80,610 U.S. dollars in 2023. Asian and Caucasian (white not Hispanic) households had relatively high median incomes, while the median income of Hispanic, Black, American Indian, and Alaskan Native households all came in lower than the national median. A number of related statistics illustrate further the current state of racial inequality in the United States. Unemployment is highest among Black or African American individuals in the U.S. with 8.6 percent unemployed, according to the Bureau of Labor Statistics in 2021. Hispanic individuals (of any race) were most likely to go without health insurance as of 2021, with 22.8 percent uninsured.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Fremont. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.
Key observations: Insights from 2023
Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Fremont, the median income for all workers aged 15 years and older, regardless of work hours, was $99,996 for males and $55,990 for females.
These income figures highlight a substantial gender-based income gap in Fremont. Women, regardless of work hours, earn 56 cents for each dollar earned by men. This significant gender pay gap, approximately 44%, underscores concerning gender-based income inequality in the city of Fremont.
- Full-time workers, aged 15 years and older: In Fremont, among full-time, year-round workers aged 15 years and older, males earned a median income of $136,764, while females earned $101,991, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.Surprisingly, the gender pay gap percentage was higher across all roles, including non-full-time employment, for women compared to men. This suggests that full-time employment offers a more equitable income scenario for women compared to other employment patterns in Fremont.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Gender classifications include:
Employment type classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Fremont median household income by race. You can refer the same here
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Employed full time: Wage and salary workers: Artists and related workers occupations: 16 years and over: Women (LEU0254698700A) from 2000 to 2024 about arts, occupation, females, full-time, salaries, workers, 16 years +, wages, employment, and USA.
The Occupational Employment and Wage Statistics (OES) program conducts a semi-annual survey to produce estimates of employment and wages for specific occupations. The OES program collects data on wage and salary workers in nonfarm establishments in order to produce employment and wage estimates for about 800 occupations. Data from self-employed persons are not collected and are not included in the estimates. The OES program produces these occupational estimates by geographic area and by industry. Estimates based on geographic areas are available at the National, State, Metropolitan, and Nonmetropolitan Area levels. The Bureau of Labor Statistics produces occupational employment and wage estimates for over 450 industry classifications at the national level. The industry classifications correspond to the sector, 3-, 4-, and 5-digit North American Industry Classification System (NAICS) industrial groups. More information and details about the data provided can be found at http://www.bls.gov/oes