Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.
Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019:This dataset now includes projections for all populated statewide traffic analysis zones (TAZs).Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below.Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org.Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services;Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Labor Law Claims market plays a critical role in safeguarding workers' rights, addressing issues such as discrimination, wrongful termination, wage disputes, and unsafe working conditions. As more employees become aware of their rights and the protections available to them under labor laws, there has been a nota
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Transport for NSW provides projections of workforce at the small area (Travel Zone or TZ) level for NSW. The latest version is Travel Zone Projections 2024 (TZP24), released in January 2025.\r \r TZP24 replaces the previously published TZP22. The projections are developed to support a strategic view of NSW and are aligned with the NSW Government Common Planning Assumptions .\r \r TZP24 Workforce Projections cover persons who reside in Occupied Private Dwellings, aged 15 years and over, and are presented by their usual place of residence.\r \r The following Workforce variables are presented in TZP24:\r \r *\tEmployed People, 15 years and over \r *\tUnemployed People, 15 years and over \r *\tPeople not in the workforce, 15 years and over \r \r The projections in this release, TZP24, are presented annually from 2021 to 2031 and 5-yearly from 2031 to 2066, and are in TZ21 geography.\r \r Please note, TZP24 is based on best available data as at early 2024 and the projections incorporate results of the National Census conducted by the ABS in August 2021.\r \r Key Data Inputs used:\r \r *\tTZP24 Population and Dwellings projections\r *\tWorkforce participation rates - NSW Treasury\r *\tHistorical labour force data - ABS Labour Force Survey\r \r For a summary of the TZP24 Projections method please refer to the TZP24 Factsheet .\r \r For more detail on the projection process please refer to the TZP24 Technical Guide .\r \r Additional land use information for population and employment as well as Travel Zone 2021 boundaries for NSW (TZ21) and concordance files are also available for download on the Open Data Hub.\r \r A visualisation of the workforce projections is available on the Transport for NSW Website .\r \r Cautions\r \r The TZP24 dataset represents one view of the future aligned with the NSW Government Common Planning Assumptions population and employment projections.\r \r The projections are not based on specific assumptions about future new transport infrastructure, but do take into account known land-use developments underway or planned, and strategic plans.\r \r *\tTZP24 is a strategic state-wide dataset and caution should be exercised when considering results at detailed breakdowns.\r *\tThe TZP24 outputs represent a point in time set of projections (as at early 2024).\r *\tThe projections are not government targets.\r *\tTravel Zone (TZ) level outputs are projections only and should be used as a guide. As with all small area data, aggregating of travel zone projections to higher geographies leads to more robust results.\r *\tAs a general rule, TZ-level projections are illustrative of a possible future only.\r *\tMore specific advice about data reliability for the specific variables projected is provided in the “Read Me” page of the Excel format summary spreadsheets on the TfNSW Open Data Hub.\r *\tCaution is advised when comparing TZP24 with the previous set of projections (TZP22) due to addition of new data sources for the most recent years, and adjustments to methodology.\r \r \r Further cautions and notes can be found in the TZP24 Technical Guide
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Workforce Connect Solution market has emerged as a pivotal sector within the broader landscape of human resource management and organizational efficiency. This innovative solution is designed to streamline workforce communication, enhance collaboration, and improve overall employee engagement by integrating vari
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The 3-year Employment Outlooks consist of a rating (very good, good, moderate, limited or very limited) of the employment prospects as well as a narrative text that provides an assessment of the main forecast indicators, recent statistics, and value-added regional observations. Employment Outlooks are developed for each detailed occupation in all provinces, territories and economic regions of Canada, where data permits. They are updated annually. The Employment Outlooks developed until the 2015-2017 period were assessed on the basis of the National Occupational Classification (NOC) 2006, and include up to 520 occupations. Beginning with the 2016-2018 Outlooks, the NOC 2011 is used for the analysis and the Outlooks include up to 500 occupations. Outlooks and trend descriptions for the latest year (currently disseminated on Job Bank) are subject to change as new information becomes available. Every effort will be made to keep the records on the Open Data Portal as up to date as possible, though delays may occur. If you have comments or questions regarding the 3-year Employment Outlooks, please contact the Labour Market Information division at: NC-LMI-IMT-GD@hrsdc-rhdcc.gc.ca
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Online Job Search Platform market has transformed the way employers and job seekers connect, shaping a critical element of the modern employment landscape. As of 2023, this industry encompasses a vast range of digital solutions designed to facilitate the hiring process and streamline job searching. The platforms
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Transport for NSW provides projections of employment at the small area (Travel Zone or TZ) level for NSW. The latest version is Travel Zone Projections 2024 (TZP24), released in January 2025.
TZP24 replaces the previously published TZP22.
The projections are developed to support a strategic view of NSW and are aligned with the NSW Government Common Planning Assumptions.
TZP24 Employment Projections are for employed persons by place of work. They are provided by Industry using two breakdowns:
33 industry categories (equivalent to the ABS 1-digit Australia and New Zealand Standard Industrial Classification (ANZSIC) codes with the exception of Manufacturing which is at 2-digit level).
4 Broad Industry Categories (groupings of the above).
The projections in this release, TZP24, are presented annually from 2021 to 2031 and 5-yearly from 2031 to 2066, and are in TZ21 geography.
Please note, TZP24 is based on best available data as at early 2024, and the projections incorporate results of the National Census conducted by the ABS in August 2021.
Key Data Inputs used:
TZP24 Workforce Projections
Census 2021 Place of Work by Destination Zone - ABS
NSW Intergenerational Report - NSW Treasury
SA4 Employment by industry projections - Victoria University
Future Employment Development Database (FEDD) - a custom dataset compiled by TfNSW between August 2023 and February 2024, that presents the number of jobs expected from major projects based on publicly available documents.
For a summary of the TZP24 Projections method please refer to the TZP24 Factsheet.
For more detail on the projection process please refer to the TZP24 Technical Guide.
Additional land use information for population and workforce as well as Travel Zone 2021 boundaries for NSW (TZ21) and concordance files are also available for download on the Open Data Hub.
Visualisations of the employment projections are available on the Transport for NSW Website.
Cautions
The TZP24 dataset represents one view of the future aligned with the NSW Government Common Planning Assumptions for population and employment projections.
The projections are not based on specific assumptions about future new transport infrastructure, but do take into account known land-use developments underway or planned, and strategic plans.
TZP24 is a strategic state-wide dataset and caution should be exercised when considering results at detailed breakdowns.
The TZP24 outputs represent a point in time set of projections (as at early -2024).
The projections are not government targets.
Travel Zone (TZ) level outputs are projections only and should be used as a guide. As with all small area data, aggregating of travel zone projections to higher geographies leads to more robust results.
As a general rule, TZ-level projections are illustrative of a possible future only.
More specific advice about data reliability for the specific variables projected is provided in the “Read Me” page of the Excel format summary spreadsheets on the TfNSW Open Data Hub.
Caution is advised when comparing TZP24 with the previous set of projections (TZP22) due to addition of new data sources for the most recent years, and adjustments to methodology.
Further cautions and notes can be found in the TZP24 Technical Guide.
Important Dataset Update 6/24/2020:Summit and Wasatch Counties updated.Important Dataset Update 6/12/2020:MAG area updated.Important Dataset Update 7/15/2019: This dataset now includes projections for all populated statewide traffic analysis zones (TAZs). Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.As with any dataset that presents projections into the future, it is important to have a full understanding of the data before using it. Before using this data, you are strongly encouraged to read the metadata description below and direct any questions or feedback about this data to analytics@wfrc.org. Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas. These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2019-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2015 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process. As these projections may be a valuable input to other analyses, this dataset is made available at http://data.wfrc.org/search?q=projections as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes. Wasatch Front Real Estate Market Model (REMM) ProjectionsWFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:Demographic data from the decennial census;County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature;Current employment locational patterns derived from the Utah Department of Workforce Services; Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff;Current land use and valuation GIS-based parcel data stewarded by County Assessors;Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations; andCalibration of model variables to balance the fit of current conditions and dynamics at the county and regional level.‘Traffic Analysis Zone’ ProjectionsThe annual projections are forecasted for each of the Wasatch Front’s 2,800+ Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres). ‘City Area’ ProjectionsThe TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.Summary Variables in the DatasetsAnnual projection counts are available for the following variables (please read Key Exclusions note below):DemographicsHousehold Population Count (excludes persons living in group quarters)Household Count (excludes group quarters)EmploymentTypical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)Retail Job Count (retail, food service, hotels, etc)Office Job Count (office, health care, government, education, etc)Industrial Job Count (manufacturing, wholesale, transport, etc)Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count.All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).* These variable includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.Key Exclusions from TAZ and ‘City Area’ ProjectionsAs the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Introducing Job Posting Datasets: Uncover labor market insights!
Elevate your recruitment strategies, forecast future labor industry trends, and unearth investment opportunities with Job Posting Datasets.
Job Posting Datasets Source:
Indeed: Access datasets from Indeed, a leading employment website known for its comprehensive job listings.
Glassdoor: Receive ready-to-use employee reviews, salary ranges, and job openings from Glassdoor.
StackShare: Access StackShare datasets to make data-driven technology decisions.
Job Posting Datasets provide meticulously acquired and parsed data, freeing you to focus on analysis. You'll receive clean, structured, ready-to-use job posting data, including job titles, company names, seniority levels, industries, locations, salaries, and employment types.
Choose your preferred dataset delivery options for convenience:
Receive datasets in various formats, including CSV, JSON, and more. Opt for storage solutions such as AWS S3, Google Cloud Storage, and more. Customize data delivery frequencies, whether one-time or per your agreed schedule.
Why Choose Oxylabs Job Posting Datasets:
Fresh and accurate data: Access clean and structured job posting datasets collected by our seasoned web scraping professionals, enabling you to dive into analysis.
Time and resource savings: Focus on data analysis and your core business objectives while we efficiently handle the data extraction process cost-effectively.
Customized solutions: Tailor our approach to your business needs, ensuring your goals are met.
Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is a founding member of the Ethical Web Data Collection Initiative, aligning with GDPR and CCPA best practices.
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Effortlessly access fresh job posting data with Oxylabs Job Posting Datasets.
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Check out Market Research Intellect's Workforce Analytics Software Market Report, valued at USD 3.5 billion in 2024, with a projected growth to USD 8.1 billion by 2033 at a CAGR of 12.8% (2026-2033).
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Employment Background Screening Service market plays a crucial role in modern hiring practices, serving as a safeguard for employers seeking to build trustworthy and efficient teams. This service involves the comprehensive verification of an individual's professional history, criminal records, education, and oth
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global digital labor platform market is experiencing robust growth, driven by the increasing demand for flexible and on-demand workforces across various sectors. The rise of the gig economy, fueled by technological advancements and changing work preferences, is a major catalyst. Freelancers, independent contractors, and project workers are increasingly leveraging these platforms to access a wider range of opportunities and achieve greater work-life balance. The market is segmented by application (freelancer, independent contractor, project worker, part-time, others) and type (app-based, website-based), reflecting the diverse needs of both service providers and clients. Key players like Upwork, Fiverr, and TaskRabbit dominate the landscape, while new entrants continue to emerge, introducing innovative features and expanding into niche markets. Geographic expansion, particularly in emerging economies with large populations and increasing internet penetration, presents significant growth potential. While competition and regulatory challenges pose some restraints, the overall market outlook remains positive, with sustained growth projected for the foreseeable future. The market’s expansion is further fueled by several factors. Businesses are increasingly outsourcing tasks and projects to reduce operational costs and enhance agility. Moreover, the evolving nature of work, with a growing preference for remote work and flexible arrangements, is driving the adoption of digital labor platforms. The COVID-19 pandemic accelerated this trend, highlighting the adaptability and resilience of these platforms. However, challenges remain, including concerns about worker classification, income inequality, and data security. Addressing these issues through effective regulation and platform innovation will be crucial for sustainable growth. Future growth will likely be shaped by technological advancements, such as AI-powered matching algorithms and enhanced security features, along with the increasing adoption of these platforms in traditionally offline sectors. The continuous evolution of these platforms suggests a promising future, albeit one requiring careful management of both opportunities and potential risks.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides an overview of emerging IT job roles, their domains, and the projected growth rates by 2030. It is designed to help identify high-growth areas in the tech industry, providing insights for career planning, workforce development, and market analysis.
This dataset is ideal for a variety of applications:
CC0
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Contingent Labor Management Software market has emerged as a vital component in the modern workforce landscape, catering to organizations that increasingly rely on contingent or freelance workers to meet their operational needs. This software effectively streamlines the management of temporary staff, contractors
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
US Residential Construction Market Size 2025-2029
The US residential construction market size is forecast to increase by USD 242.9 million at a CAGR of 4.5% between 2024 and 2029.
The Residential Construction Market in the US is experiencing significant growth driven by increasing household formation rates and a rising focus on sustainability in new projects. According to the latest data, household formation is projected to continue growing at a steady pace, fueling the demand for new residential units. This trend is particularly evident in urban areas, where population growth and limited space for new development are driving up demand. Meanwhile, the emphasis on sustainability in residential construction is transforming the market landscape. With consumers increasingly prioritizing energy efficiency and eco-friendly features in their homes, builders and developers are responding by incorporating green technologies and sustainable materials into their projects.
This shift not only appeals to environmentally-conscious consumers but also offers long-term cost savings and regulatory compliance benefits. However, the market is not without challenges. Skilled labor shortages continue to pose a significant hurdle for large-scale residential real estate projects. The ongoing shortage of skilled laborers, including carpenters, electricians, and plumbers, is driving up labor costs and delaying project timelines. To mitigate this challenge, some builders are exploring alternative solutions, such as modular construction and automation, to streamline their operations and reduce their reliance on traditional labor sources. The Residential Construction Market in the US presents significant opportunities for companies seeking to capitalize on the growing demand for new housing units and the shift towards sustainability.
However, navigating the challenges of labor shortages and rising costs will require innovative solutions and strategic planning. By staying informed of market trends and adapting to evolving consumer preferences, companies can effectively position themselves for success in this dynamic market.
What will be the size of the US Residential Construction Market during the forecast period?
Request Free Sample
The residential construction market in the United States continues to exhibit dynamic activity, driven by various economic factors. Housing supply remains a key focus, with ongoing discussions surrounding the affordable housing trend and efforts to increase inventory, particularly for single-family homes and new constructions. Mortgage and federal funds rates have an impact on residential investment, with fluctuations influencing buyer decisions and construction costs. The labor market plays a crucial role, as workforce availability and wages affect both housing starts and cancellation rates. Inflation and interest rates, monitored closely by the Federal Reserve, also shape the market's direction. Recession risks and economic conditions influence construction spending across various sectors, including multifamily and single-family homes.
Federal programs, such as housing choice vouchers and fair housing initiatives, continue to support home buyers and promote equitable housing opportunities. Building permits and housing starts serve as essential indicators of market health and future growth, with some sectors experiencing double-digit growth. Overall, the residential construction market in the US remains a significant economic driver, shaped by a complex interplay of economic, demographic, and policy factors.
How is this market segmented?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Product
Apartments and condominiums
Luxury Homes
Other types
Type
New construction
Renovation
Application
Single family
Multi-family
Construction Material
Wood-framed
Concrete
Steel
Modular/Prefabricated
Geography
US
By Product Insights
The apartments and condominiums segment is estimated to witness significant growth during the forecast period.
The residential construction market in the US is experiencing growth in both the apartment and condominium sectors, driven by the increasing trend toward urbanization and changing lifestyle preferences. Apartments, typically owned by property management companies, and condominiums, with individually owned units within a larger complex, contribute significantly to the market. The Federal Reserve's influence on the economy through the federal funds rate and mortgage rates impacts borrowing rates and home construction activity. The affordability of housing, particularly for younger generations, is a concern due to factors such as inflation, labor market conditions, and savings
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Check out Market Research Intellect's Contingent Workforce Management Market Report, valued at USD 12.5 billion in 2024, with a projected growth to USD 24.8 billion by 2033 at a CAGR of 8.5% (2026-2033).
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Check out Market Research Intellect's report_name, valued at current_value in 2024, with a projected growth to forecast_value by 2033 at a CAGR of cagr_value (2026-2033).
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Check out Market Research Intellect's Job Evaluation Software Market Report, valued at USD 1.2 billion in 2024, with a projected growth to USD 2.5 billion by 2033 at a CAGR of 9.5% (2026-2033).
Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.
These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.
Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.
As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.
Wasatch Front Real Estate Market Model (REMM) Projections
WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:
Demographic data from the decennial census
County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
Current employment locational patterns derived from the Utah Department of Workforce Services
Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
Current land use and valuation GIS-based parcel data stewarded by County Assessors
Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
‘Traffic Analysis Zone’ Projections
The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).
‘City Area’ Projections
The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.
Summary Variables in the Datasets
Annual projection counts are available for the following variables (please read Key Exclusions note below):
Demographics
Household Population Count (excludes persons living in group quarters)
Household Count (excludes group quarters)
Employment
Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
Retail Job Count (retail, food service, hotels, etc)
Office Job Count (office, health care, government, education, etc)
Industrial Job Count (manufacturing, wholesale, transport, etc)
Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count
All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
Key Exclusions from TAZ and ‘City Area’ Projections
As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.
Statewide Projections
Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.