VITAL SIGNS INDICATOR Jobs (LU2)
FULL MEASURE NAME Employment estimates by place of work
LAST UPDATED March 2020
DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees.
DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/
U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/
U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/
Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/
METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed.
For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017.
The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma
VITAL SIGNS INDICATOR Time Spent in Congestion (T7)
FULL MEASURE NAME Time Spent in Congestion
LAST UPDATED October 2018
DATA SOURCE MTC/Iteris Congestion Analysis No link available
CA Department of Finance Forms E-8 and E-5 http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-8/ http://www.dof.ca.gov/Forecasting/Demographics/Estimates/E-5/
CA Employment Division Department: Labor Market Information http://www.labormarketinfo.edd.ca.gov/
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Time spent in congestion measures the hours drivers are in congestion on freeway facilities based on traffic data. In recent years, data for the Bay Area comes from INRIX, a company that collects real-time traffic information from a variety of sources including mobile phone data and other GPS locator devices. The data provides traffic speed on the region’s highways. Using historical INRIX data (and similar internal datasets for some of the earlier years), MTC calculates an annual time series for vehicle hours spent in congestion in the Bay Area. Time spent in congestion is defined as the average daily hours spent in congestion on Tuesdays, Wednesdays and Thursdays during peak traffic months on freeway facilities. This indicator focuses on weekdays given that traffic congestion is generally greater on these days; this indicator does not capture traffic congestion on local streets due to data unavailability.
This congestion indicator emphasizes recurring delay (as opposed to also including non-recurring delay), capturing the extent of delay caused by routine traffic volumes (rather than congestion caused by unusual circumstances). Recurring delay is identified by setting a threshold of consistent delay greater than 15 minutes on a specific freeway segment from vehicle speeds less than 35 mph. This definition is consistent with longstanding practices by MTC, Caltrans and the U.S. Department of Transportation as speeds less than 35 mph result in significantly less efficient traffic operations. 35 mph is the threshold at which vehicle throughput is greatest; speeds that are either greater than or less than 35 mph result in reduced vehicle throughput. This methodology focuses on the extra travel time experienced based on a differential between the congested speed and 35 mph, rather than the posted speed limit.
To provide a mathematical example of how the indicator is calculated on a segment basis, when it comes to time spent in congestion, 1,000 vehicles traveling on a congested segment for a 1/4 hour (15 minutes) each, [1,000 vehicles x ¼ hour congestion per vehicle= 250 hours congestion], is equivalent to 100 vehicles traveling on a congested segment for 2.5 hours each, [100 vehicles x 2.5 hour congestion per vehicle = 250 hours congestion]. In this way, the measure captures the impacts of both slow speeds and heavy traffic volumes.
MTC calculates two measures of delay – congested delay, or delay that occurs when speeds are below 35 miles per hour, and total delay, or delay that occurs when speeds are below the posted speed limit. To illustrate, if 1,000 vehicles are traveling at 30 miles per hour on a one mile long segment, this would represent 4.76 vehicle hours of congested delay [(1,000 vehicles x 1 mile / 30 miles per hour) - (1,000 vehicles x 1 mile / 35 miles per hour) = 33.33 vehicle hours – 28.57 vehicle hours = 4.76 vehicle hours]. Considering that the posted speed limit on the segment is 60 miles per hour, total delay would be calculated as 16.67 vehicle hours [(1,000 vehicles x 1 mile / 30 miles per hour) - (1,000 vehicles x 1 mile / 60 miles per hour) = 33.33 vehicle hours – 16.67 vehicle hours = 16.67 vehicle hours].
Data sources listed above were used to calculate per-capita and per-worker statistics. Top congested corridors are ranked by total vehicle hours of delay, meaning that the highlighted corridors reflect a combination of slow speeds and heavy traffic volumes (consistent with longstanding regional methodologies used to generate the “top 10” list of congested segments). Historical Bay Area data was estimated by MTC Operations staff using a combination of internal datasets to develop an approximate trend back to 1998.
To explore how 2017 congestion trends compare to real-time congestion on the region’s freeways, visit 511.org.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
VITAL SIGNS INDICATOR Jobs (LU2)
FULL MEASURE NAME Employment estimates by place of work
LAST UPDATED March 2020
DESCRIPTION Jobs refers to the number of employees in a given area by place of work. These estimates do not include self-employed and private household employees.
DATA SOURCE California Employment Development Department: Current Employment Statistics 1990-2018 http://www.labormarketinfo.edd.ca.gov/
U.S. Census Bureau: LODES Data Longitudinal Employer-Household Dynamics Program (2005-2010) http://lehd.ces.census.gov/
U.S. Census Bureau: American Community Survey 5-Year Estimates, Tables S0804 (2010) and B08604 (2010-2017) https://factfinder.census.gov/
Bureau of Labor Statistics: Current Employment Statistics Table D-3: Employees on nonfarm payrolls (1990-2018) http://www.bls.gov/data/
METHODOLOGY NOTES (across all datasets for this indicator) The California Employment Development Department (EDD) provides estimates of employment, by place of employment, for California counties. The Bureau of Labor Statistics (BLS) provides estimates of employment for metropolitan areas outside of the Bay Area. Annual employment data are derived from monthly estimates and thus reflect “annual average employment.” Employment estimates outside of the Bay Area do not include farm employment. For the metropolitan area comparison, farm employment was removed from Bay Area employment totals. Both EDD and BLS data report only wage and salary jobs, not the self-employed.
For measuring jobs below the county level, Vital Signs assigns collections of incorporated cities and towns to sub-county areas. For example, the cities of East Palo Alto, Menlo Park, Portola Valley, Redwood City and Woodside are considered South San Mateo County. Because Bay Area counties differ in footprint, the number of sub-county city groupings varies from one (San Francisco and San Jose counties) to four (Santa Clara County). Estimates for sub-county areas are the sums of city-level estimates from the U.S. Census Bureau: American Community Survey (ACS) 2010-2017.
The following incorporated cities and towns are included in each sub-county area: North Alameda County – Alameda, Albany, Berkeley, Emeryville, Oakland, Piedmont East Alameda County - Dublin, Livermore, Pleasanton South Alameda County - Fremont, Hayward, Newark, San Leandro, Union City Central Contra Costa County - Clayton, Concord, Danville, Lafayette, Martinez, Moraga, Orinda, Pleasant Hill, San Ramon, Walnut Creek East Contra Costa County - Antioch, Brentwood, Oakley, Pittsburg West Contra Costa County - El Cerrito, Hercules, Pinole, Richmond, San Pablo Marin – all incorporated cities and towns Napa – all incorporated cities and towns San Francisco – San Francisco North San Mateo - Brisbane, Colma, Daly City, Millbrae, Pacifica, San Bruno, South San Francisco Central San Mateo - Belmont, Burlingame, Foster City, Half Moon Bay, Hillsborough, San Carlos, San Mateo South San Mateo - East Palo Alto, Menlo Park, Portola Valley, Redwood City, Woodside North Santa Clara - Los Altos, Los Altos Hills, Milpitas, Mountain View, Palo Alto, Santa Clara, Sunnyvale San Jose – San Jose Southwest Santa Clara - Campbell, Cupertino, Los Gatos, Monte Sereno, Saratoga South Santa Clara - Gilroy, Morgan Hill East Solano - Dixon, Fairfield, Rio Vista, Suisun City, Vacaville South Solano - Benicia, Vallejo North Sonoma - Cloverdale, Healdsburg, Windsor South Sonoma - Cotati, Petaluma, Rohnert Park, Santa Rosa, Sebastopol, Sonoma