Facebook
TwitterThis data package, LAGOS-NE-LIMNO v1.087.3, is 1 of 5 data packages associated with the LAGOS-NE database-- the LAke multi-scaled GeOSpatial and temporal database. With this release, only this data package is being updated and users are expected to use prior releases of the other types of data. Please see the attached additional documentation for a full description of the changes that have been made for this new release.The data packages that make up LAGOS-NE include the following information on lakes and reservoirs in 17 lake-rich states in the Northeastern and upper Midwestern U.S. (1) LAGOS-NE-LOCUS v1.01: lake location and physical characteristics for all lakes greater than one hectare. (2) LAGOS-NE-GEO v1.05: ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes and for all spatial resolutions, also called ‘zones’ (i.e., ecoregions, states, counties). These geospatial data were created by processing national-scale and publicly-accessible datasets to quantify numerous metrics at multiple spatial resolutions. (3) LAGOS-NE-LIMNO v1.087.3: in-situ measurements of lake water quality from the past three decades for approximately 2,600-12,000 lakes, depending on the variable. This module was created by harmonizing 87 water quality datasets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This module includes variables that are most commonly measured by state agencies and researchers for studying eutrophication. For each water quality data value, we also include metadata related to the sampling program, methods, qualifiers with data flags from the original program (qual, not standardized for LAGOS-NE), censor codes from our quality control procedures (censorcode, standardized for LAGOS-NE), and the date of each sample. (4) LAGOS-NE-GIS v1.0: the GIS data layers for lakes, wetlands, and streams, as well as the spatial resolutions that were used to create the LAGOS-NE-GEO module. (5) LAGOS-NE-RAWDATA: the original 87 datasets of lake water quality prior to processing, the R code that converts the original data formats into LAGOS-NE data format, and the log file from this procedure to create LAGOS-NE. This latter data package supports the reproducibility of the LAGOS-NE-LIMNO data module. Citation for the full documentation of this database: Soranno, P.A., E.G. Bissell, K.S. Cheruvelil, S.T. Christel, S.M. Collins, C.E. Fergus, C.T. Filstrup, J.F. Lapierre, N.R. Lottig, S.K. Oliver, C.E. Scott, N.J. Smith, S. Stopyak, S. Yuan, M.T. Bremigan, J.A. Downing, C. Gries, E.N. Henry, N.K. Skaff, E.H. Stanley, C.A. Stow, P.-N. Tan, T. Wagner, K.E. Webster. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science and data reuse. GigaScience 4:28 https://doi.org/10.1186/s13742-015-0067-4 Citation for the data paper for this database: Soranno, P.A., L.C. Bacon, M. Beauchene, K.E. Bednar, E.G. Bissell, C.K. Boudreau, M.G. Boyer, M.T. Bremigan, S.R. Carpenter, J.W. Carr, K.S. Cheruvelil, S.T. Christel, M. Claucherty, S.M.Collins, J.D. Conroy, J.A. Downing, J. Dukett, C.E. Fergus, C.T. Filstrup, C. Funk, M.J. Gonzalez, L.T. Green, C. Gries, J.D. Halfman, S.K. Hamilton, P.C. Hanson, E.N. Henry, E.M. Herron, C. Hockings, J.R. Jackson, K. Jacobson-Hedin, L.L. Janus, W.W. Jones, J.R. Jones, C.M. Keson, K.B.S. King, S.A. Kishbaugh, J.F. Lapierre, B. Lathrop, J.A. Latimore, Y. Lee, N.R. Lottig, J.A. Lynch, L.J. Matthews, W.H. McDowell, K.E.B. Moore, B.P. Neff, S.J. Nelson, S.K. Oliver, M.L. Pace, D.C. Pierson, A.C. Poisson, A.I. Pollard, D.M. Post, P.O. Reyes, D.O. Rosenberry, K.M. Roy, L.G. Rudstam, O. Sarnelle, N.J. Schuldt, C.E. Scott, N.K. Skaff, N.J. Smith, N.R. Spinelli, J.J. Stachelek, E.H. Stanley, J.L. Stoddard, S.B. Stopyak, C.A. Stow, J.M. Tallant, P.-N. Tan, A.P. Thorpe, M.J. Vanni, T. Wagner, G. Watkins, K.C. Weathers, K.E. Webster, J.D. White, M.K. Wilmes, S. Yuan. 2017. LAGOS-NE: A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes. Gigascience 6(12) https://doi.org/10.1093/gigascience/gix101
Facebook
TwitterThis dataset contains the default data provided with the Nutrient Explorer Downloadable application (SI: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=CPHEA&dirEntryId=358039), which is used for testing out the features and capabilities of the app. The dataset is based off of LAGOS-NE, lake total nitrogen and total phosphorus concentration data from lakes in the Northeast United States and is combined with a number of explanatory variables such as geology, land use, climate, nutrient inputs, and lake characteristics. Portions of this dataset are inaccessible because: The .RData format is not allowed to be uploaded on ScienceHub (see above response). They can be accessed through the following means: The .RData files can be accessed when the user downloaded the NutrientExplorer application zip files on the ScienceInventory link: https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=CPHEA&dirEntryId=358039. The user need to have RStudio installed to open the application and be able to use the RData files. Format: Some of the data files associated with the Nutrient Explorer application are in the .RData format, which can not be uploaded to ScienceHub. These files include hydrologic unit (HU8) watershed shapefiles and some datasets similar to the .csv files uploaded here containing variables used for testing out the application's features. This dataset is associated with the following publication: Pennino, M., M. Fry, R. Sabo, and J. Carleton. Nutrient Explorer: An analytical framework to visualize and investigate drivers of surface water quality. ENVIRONMENTAL MODELLING & SOFTWARE. Elsevier Science, New York, NY, 170: 105853, (2023).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chemical Properties of Lakes: Introduction to the Lake Multi-Scaled Geospatial and Temporal Database (LAGOSNE)
This lesson was adapted from educational material written by Dr. Kateri Salk for her Fall 2019 Hydrologic Data Analysis course at Duke University.
Introduction Trophic states are based on lake fertility. The root “trophy” means nutrients; therefore, lakes are classified based on the amount of available nutrients for organisms. More fertile lakes have more nutrients and therefore more plants and algae. There are four lake trophic states:
“Oligo” means very little; therefore, oligotrophic means very little nutrients (Phosphorus and Nitrogen). In oligotrophic lakes, oxygen is found at high levels throughout the water column. Cold water can hold more dissolved oxygen than warm water, and the deep region of oligotrophic lakes stays very cold. In addition, low algal concentration allows deeper light penetration and less decomposition.
“Meso” means middle or mid; therefore, mesotrophic means a medium amount of nutrients (Phosphorus and Nitrogen). Mesotrophic lakes behave differently than oligotrophic lakes in that they stratify, meaning they separate into layers in the summer (more on lake stratification). The top layer of water becomes warm from the sun and contains algae. Since the by-product of photosynthesis is oxygen, oxygen concentration remains high at the surface of the lake. The bottom layer remains cooler and can become anoxic in mid-summer.
“Eu” means true; therefore, eutrophic literally means true nutrients or truly nutrient rich (Phosphorus and Nitrogen). Eutrophic lakes are found in southern Minnesota where the soils are more fertile and where there is a lot of farmland. Eutrophic lakes are shallow and have murky water and mucky, soft bottoms.
Hypereutrophic lakes are at the extreme end of the eutrophic range with exceedingly high nutrient concentrations and associated biomass production. In temperate regions the fish communities are dominated by roach and bream. Anoxia or complete loss of oxygen often occurs in the hypolimnion during summer stratification.
For more information on lake trophic states, please visit http://www.lake.wateratlas.usf.edu/library/learn-more/learnmore.aspx?toolsection=lm_tsi and http://www.manitowoccountylakesassociation.org/oligotrophic-vs-mesotrophic-vs-eutrophic/.
Learning Objectives
After successfully completing this exercise, you will be able to:
Facebook
TwitterWater quality is a critical consideration in determining the beneficial uses of these waters. Water clarity has long been used by aquatic monitoring programs as a visual indicator of the condition of water quality. During field operations, water clarity is often monitored using an inexpensive Secchi disk. The Secchi disk is a 20-centimeter (8 inch) diameter metal or weighted plastic disk, normally black and white, which is attached to a measured line and lowered into a lake until it can be no longer seen. Therefore, Secchi depth becomes a visual measure of water clarity. This dataset contains Secchi depths predicted from atmospherically corrected Landsat 8 spectral data collected from 2014 – 2018 for over 200 lakes and reservoirs in the continental United States and in situ Secchi data from eutrophic, mesotrophic, and oligotrophic lakes and reservoirs retrieved from the AquaSat database as well as the Water Quality Portal (WQP) and LAGOS-NE databases, which are paired (matched) with Landsat archived images collected within 1- 3 days of a sampling event. The data are in tabular format in an EXCEL spreadsheet in *.xlsx format. The data were collected to determine if Secchi depths could be accurately determined for inland lakes and reservoirs at continental scales from satellite derived inherent optical properties and light attenuation character of freshwater lakes and reservoirs. The predicted Secchi depth data were then used in an assessment framework to supplement social surveys which seek to assess the suitability of freshwater lakes and reservoirs for recreation based on public perception.
Facebook
TwitterTime series of mean summer total nitrogen (TN), total phosphorus (TP), stoichiometry (TN:TP) and chlorophyll values from 2913 unique lakes in the Midwest and Northeast United States. Epilimnetic nutrient and chlorophyll observations were derived from the Lake Multi-Scaled Geospatial and Temporal Database LAGOS-NE LIMNO version 1.054.1, and come from 54 disparate data sources. These data were used to assess long-term monotonic changes in water quality from 1990-2013, and the potential drivers of those trends (Oliver et al., submitted). Summer was used to approximate the stratified period, which was defined as June 15 to September 15. The median number of observations per summer for a given lake was 2, but ranged from 1 to 83. The rules for inclusion in the database were that, for a given water quality parameter, a lake must have an observation in each period of 1990-2000 and 2001-2011. Additionally, observations must span at least 5 years. Each unique lake with nutrient or chlorophyll data also has supporting geophysical data, including climate, atmospheric deposition, land use, hydrology, and topography derived at the lake watershed (variable prefix “iws”) and HUC 4 (variable prefix “hu4”) scale. Lake-specific characteristics, such as depth and area, are also reported. The geospatial data came from LAGOS-NE GEO version 1.03. For more specific information on how LAGOS-NE was created, see Soranno et al. 2015. Soranno P.A., Bissell E.G., Cheruvelil K.S., Christel S.T., Collins S.M., Fergus C.E., Filstrup C.T., Lapierre J.-F., Lottig N.R., Oliver S.K., Scott C.E., Smith N.J., Stopyak S., Yuan S., Bremigan M.T., Downing J.A., Gries C., Henry E.N., Skaff N.K., Stanley E.H., Stow C.A., Tan P.-N., Wagner T., and Webster K.E. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse. Gigascience 4: 28. doi: 10.1186/s13742-015-0067-4.
Facebook
TwitterWe conducted a macroscale study of 2,210 shallow lakes (mean depth ≤ 3m or a maximum depth ≤ 5m) in the Upper Midwestern and Northeastern U.S. We asked: What are the patterns and drivers of shallow lake total phosphorus (TP), chlorophyll a (CHLa), and TP–CHLa relationships at the macroscale, how do these differ from those for 4,360 non-shallow lakes, and do results differ by hydrologic connectivity class? To answer this question, we assembled the LAGOS-NE Shallow Lakes dataset described herein, a dataset derived from existing LAGOS-NE, LAGOS-DEPTH, and LAGOS-CLIMATE datasets. Response data variables were the median of available summer (e.g., 15 June to 15 September) values of total phosphorus (TP) and chlorophyll a (CHLa). Predictor variables were assembled at two spatial scales for incorporation into hierarchical models. At the local or lake-specific scale (including the individual lake, its inter-lake watershed [iws] or corresponding HU12 watershed), variables included those representing land use/cover, hydrology, climate, morphometry, and acid deposition. At the regional scale (e.g., HU4 watershed), variables included a smaller set of predictor variables for hydrology and land use/cover. The dataset also includes the unique identifier assigned by LAGOS-NE(lagoslakeid); the latitude and longitude of the study lakes; their maximum and mean depths along with a depth classification of Shallow or non-Shallow; connectivity class (i.e., whether a lake was classified as connected (with inlets and outlets) or unconnected (lacking inlets); and the zone id for the HU4 to which each lake belongs. Along with the database, we provide the R scripts for the hierarchical models predicting TP or CHLa (TPorCHL_predictive_model.R), and the TP—CHLa relationship (TP_CHL_CSI_Model.R) for depth and connectivity subsets of the study lakes.
Facebook
TwitterThis dataset includes data for eight major limnological variables in LAGOS-NE_LIMNO v. 1.087.1 that were used to evaluate biases in lake water quality sampling and implications for macroscale research (Stanley et al. In Revision, Limnology and Oceanography). Most observations came from LAGOS-NE_LIMNO v. 1.087.1, an integrated database of lake ecosystems (Soranno et al. 2015, Soranno et al. 2017) but were supplemented with additional data from the State of New Hampshire. LAGOS-NE contains information on lakes great than or equal to 1 ha (originally derived from the U.S. Geological Survey's 2013 National Hydrography Dataset) for a 17-state region of the U.S., and a subset of the lakes has observational data on lake chemistry and productivity. Approximately 87 different sources of data were compiled for the LAGOS-NELIMNO v. 1.087.1 dataset and were mostly generated by government agencies (state, federal, tribal) and universities. In this analysis, we compiled data for eight major limnological variables (Secchi disk depth, chlorophyll, total phosphorus, total nitrogen, nitrate, ammonium, true water color, and dissolved organic carbon) and geographic characteristics of lakes (location, lake area, depth, perimeter, watershed area) to evaluate biases in different limnological properties over space and time.
Facebook
TwitterThese data describe climate at different temporal scales and can easily be integrated into analyses using limnological and geospatial data in the LAGOS-NE database. This includes 1) monthly, seasonal and annual PRISM temperature and precipitation data at the hydrologic unit code-12 (HUC-12) watershed scale, 2) monthly, seasonal and annual Palmer Hydrological Drought Index (PHDI) data for all lakes over 4ha in LAGOS-NE by lagoslakeid (unique lake identifier), and 3) 30-year averages (1981-2010) of monthly, seasonal and annual PRISM temperature and precipitation data at the HUC-12 watershed scale linked to all lakes over 4ha in LAGOS-NE by lagoslakeid.
Facebook
TwitterTime series of median summer water clarity (secchi) values from 601 unique lakes in the Midwest and Northeast United States. Water clarity observations were derived from the Lake Multi-Scaled Geospatial and Temporal Database LAGOS-NELIMNO version 1.054.1. These data were used to assess long-term changes in water clarity from 1987-2011, and the potential drivers of those trends (Lottig et al. in press). Summer was used to approximate the stratified period, which was defined as June 15 to September 15. Over the 25-year time period, each lake had to have at least a single summer water clarity observation for 22 of 25 years. The median number of secchi measurements that were used to derive a single annual median value for each lake was approximately 9. Of the over 14,000 annual estimates of water clarity that we generated, only 2percent of those annual values were generated from a single observation and median number of observations for each lake over the 25-year study period was 223. Each unique lake with water clarity data also has supporting geophysical data, including climate, land use, hydrology, and topography derived at the multiple spatial scales. Lake-specific characteristics, such as depth and area, are also reported. The geospatial data came from LAGOS-NEGEO version 1.03 except for the annual climate data which was aggregated at the HUC8 spatial scale on an annual basis from PRISM data. For more specific information on how LAGOS-NE was created, see Soranno et al. 2015. Lottig, N.R., P-N. Tan, T. Wager, K.S. Cheruvelil, P.A. Soranno, E.H. Stanley, C.E Scott, C.A. Stow, and S. Yuan. in press. Macroscale patterns of synchrony identify complex relationships among spatial and temporal ecosystem drivers. Ecosphere Soranno P.A., Bissell E.G., Cheruvelil K.S., Christel S.T., Collins S.M., Fergus C.E., Filstrup C.T., Lapierre J.-F., Lottig N.R., Oliver S.K., Scott C.E., Smith N.J., Stopyak S., Yuan S., Bremigan M.T., Downing J.A., Gries C., Henry E.N., Skaff N.K., Stanley E.H., Stow C.A., Tan P.-N., Wagner T., and Webster K.E. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: fostering open science and data reuse. Gigascience 4: 28. doi: 10.1186/s13742-015-0067-4.
Facebook
TwitterThis dataset was created for the following publication: Cheruvelil, K.S., S. Yuan, K.E. Webster, P.-N. Tan, J.-F. Lapierre, S.M. Collins, C.E. Fergus, C.E. Scott, E.N. Henry, P.A. Soranno, C.T. Filstrup, T. Wagner. Under review. Creating multi-themed ecological regions for macrosystems ecology: Testing a flexible, repeatable, and accessible clustering method. Submitted to Ecology and Evolution July 2016. This dataset includes lake total phosphorus (TP) and Secchi data from summer, epilimnetic water samples, as well as 52 geographic variables at the HU-12 scale; it is a subset of the larger LAGOS-NE database (Lake multi-scaled geospatial and temporal database, described in Soranno et al. 2015). LAGOS-NE compiles multiple, individual lake water chemistry datasets into an integrated database. We accessed LAGOSLIMNO version 1.054.1 for lake water chemistry data and LAGOSGEO version 1.03 for geographic data. In the LAGOSLIMNO database, lake water chemistry data were collected from individual state agency sampling and volunteer programs designed to monitor lake water quality. Water chemistry analyses follow standard lab methods. In the LAGOSGEO database geographic data were collected from national scale geographic information systems (GIS) data layers. The dataset is a subset of the following integrated databases: LAGOSLIMNO v.1.054.1 and LAGOSGEO v.1.03. For full documentation of these databases, please see the publication below: Soranno, P.A., E.G. Bissell, K.S. Cheruvelil, S.T. Christel, S.M. Collins, C.E. Fergus, C.T. Filstrup, J.F. Lapierre, N.R. Lottig, S.K. Oliver, C.E. Scott, N.J. Smith, S. Stopyak, S. Yuan, M.T. Bremigan, J.A. Downing, C. Gries, E.N. Henry, N.K. Skaff, E.H. Stanley, C.A. Stow, P.-N. Tan, T. Wagner, K.E. Webster. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science and data reuse. GigaScience 4:28 doi:10.1186/s13742-015-0067-4 .
Facebook
TwitterThis dataset includes integrated freshwater abundance and connectivity cluster output, principal component scores, and lake, wetland, and stream abundance and connectivity metrics measured at the Hydrologic Unit 8 (HU8) scale for 17 U.S. states in the Midwest and Northeast regions (appr. 1,800,000 km2). The intent of the cluster analysis is to characterize the macroscale patterns of the integrated freshwater landscape that includes lakes, wetlands, and streams and their surface connectivity attributes. We define freshwater connectivity as the permanent surface hydrologic connections that link lakes, wetlands, and streams and measure connectivity as the landscape position of systems within stream networks. Geographic data used in the analysis are in LAGOS-NE-GEO database v. 1.03 (Lake multi-scaled geospatial and temporal database), an integrated, multi-thematic geographic database (Soranno et al. 2015). The integrated freshwater clusters were created through a multi-step process as follows: 1) we quantified multiple freshwater connectivity metrics for lakes, streams, and wetlands separately, 2) we performed principal components analysis (PCA) on the connectivity metric values for each freshwater type to reduce collinearity, and 3) we performed k-means cluster analysis to group spatial units with similar freshwater connectivity characteristics. The resulting freshwater clusters are representations of the macroscale patterns of freshwater abundance and connectivity in the landscape.
Facebook
Twitterhttps://www.etalab.gouv.fr/licence-ouverte-open-licencehttps://www.etalab.gouv.fr/licence-ouverte-open-licence
Zone exposée à un ou plusieurs aléas représentée sur la carte des aléas utilisée pour l'analyse du risque du PPR. La carte d'aléas est le résultat de l'étude des aléas dont l'objectif est d'évaluer l'intensité de chaque aléa en tout point de la zone d'étude. La méthode d'évaluation est spécifique à chaque type d'aléa. Elle conduit à délimiter un ensemble de zones sur le périmètre d'étude constituant un zonage gradué en fonction du niveau de l'aléa. L'attribution d'un niveau d'aléa en un point donné du territoire prend en compte la probabilité d'occurrence du phénomène dangereux et son degré d'intensité. Pour les PPRN multi-aléas, chaque zone est usuellement repérée sur la carte d'aléa par un code pour chaque aléa auquel elle est exposée. Toutes les zones d'aléa représentées sur la carte des aléas sont incluses. Les zones protégées par des ouvrages de protection doivent être représentées (éventuellement de façon spécifique) car elles sont toujours considérées soumises à l'aléa (cas de rupture ou d'insuffisance de l'ouvrage). Les zones d'aléas peuvent être qualifiées de données élaborées dans la mesure où elles résultent d'une synthèse utilisant plusieurs sources de données d'aléas calculées, modélisées ou observés. Ces données sources ne sont pas concernées par cette classe d'objets mais par un autre standard traitant de la connaissance des aléas. Certaines zones du périmètre d'étude sont considérées comme des « zones d'aléa nul ou insignifiant ». Il s'agit des zones où l'aléa a été étudié et où il est nul. Ces zones ne sont pas incluses dans la classe d'objets et n'ont pas à être représentées comme des zones d'aléa. Cependant, dans le cas des PPR naturels, le zonage réglementaire peut classer certaines zones non exposées à l'aléa en zone de prescription (voir la définition de la classe ZonePPR).
Tables des zones exposées à un ou plusieurs aléas, représentées sur la carte des aléas du PPR. Avertissement : Les données diffusées sont informatives et non opposables au tiers. Les données SIG ont été standardisées à partir des données numériques ayant servis à l'élaboration des PPRn approuvés. Nous ne garantissons pas leur exhaustivité et leur exactitude par rapport aux documents opposables. Les documents officiels et opposables aux tiers peuvent être consultés à la Mairie ou à la préfecture.
Origine
Mise au standard COVADIS des données numériques des PPRn des départements de la région Aquitaine (en 2014).
Les limites d'une zone d'aléa sont représentées sur la carte des aléas en fonction du niveau de l'aléa. Autrement dit, les objets polygones représentant les zones d'aléas forment une couverture partielle de la zone étudiée dont chaque élément de couverture est un polygone fermé dans lequel des aléas ont le même niveau d'intensité. Autrement dit, le critère de découpage des zones d'aléa est le niveau de l'aléa.
Organisations partenaires
DDTM Pyrénées-Atlantiques
Liens annexes
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Zone exposée à un ou plusieurs aléas représentée sur la carte des aléas utilisée pour l'analyse du risque du PPR. La carte d'aléas est le résultat de l'étude des aléas dont l'objectif est d'évaluer l'intensité de chaque aléa en tout point de la zone d'étude. La méthode d'évaluation est spécifique à chaque type d'aléa. Elle conduit à délimiter un ensemble de zones sur le périmètre d'étude constituant un zonage gradué en fonction du niveau de l'aléa. L'attribution d'un niveau d'aléa en un point donné du territoire prend en compte la probabilité d'occurrence du phénomène dangereux et son degré d'intensité. Pour les PPRN multi-aléas, chaque zone est usuellement repérée sur la carte d'aléa par un code pour chaque aléa auquel elle est exposée. Toutes les zones d'aléa représentées sur la carte des aléas sont incluses. Les zones protégées par des ouvrages de protection doivent être représentées (éventuellement de façon spécifique) car elles sont toujours considérées soumises à l'aléa (cas de rupture ou d'insuffisance de l'ouvrage). Les zones d'aléas peuvent être qualifiées de données élaborées dans la mesure où elles résultent d'une synthèse utilisant plusieurs sources de données d'aléas calculées, modélisées ou observés. Ces données sources ne sont pas concernées par cette classe d'objets mais par un autre standard traitant de la connaissance des aléas. Certaines zones du périmètre d'étude sont considérées comme des « zones d'aléa nul ou insignifiant ». Il s'agit des zones où l'aléa a été étudié et où il est nul. Ces zones ne sont pas incluses dans la classe d'objets et n'ont pas à être représentées comme des zones d'aléa. Cependant, dans le cas des PPR naturels, le zonage réglementaire peut classer certaines zones non exposées à l'aléa en zone de prescription (voir la définition de la classe ZonePPR). Tables des zones exposées à un ou plusieurs aléas, représentées sur la carte des aléas du PPR. Avertissement : Les données diffusées sont informatives et non opposables au tiers. Les données SIG ont été standardisées à partir des données numériques ayant servis à l'élaboration des PPRn approuvés. Nous ne garantissons pas leur exhaustivité et leur exactitude par rapport aux documents opposables. Les documents officiels et opposables aux tiers peuvent être consultés à la Mairie ou à la préfecture.
Facebook
TwitterPour les PPR naturels, le code de l'environnement définit deux catégories de zones (L562-1) : - les zones exposées aux risques, - les zones qui ne sont pas directement exposées aux risques mais sur lesquelles des mesures peuvent être prévues pour éviter d'aggraver le risque. En fonction du niveau d'aléa, chaque zone fait l'objet d'un règlement opposable.
Les règlements distinguent généralement trois types de zones : 1- les « zones d'interdiction de construire », dites « zones rouges », lorsque le niveau d'aléa est fort et que la règle générale est l'interdiction de construire ; 2- les « zones soumises à prescriptions », dites « zones bleues », lorsque le niveau d'aléa est moyen et que les projets sont soumis à des prescriptions adaptées au type d'enjeu ; 3- les zones non directement exposées aux risques mais où des constructions, des ouvrages, des aménagements ou des exploitations agricoles, forestières, artisanales, commerciales ou industrielles pourraient aggraver des risques ou en provoquer de nouveaux, soumises à interdictions ou prescriptions (cf. article L562-1 du Code de l'environnement) . Cette dernière catégorie ne s'applique qu'aux PPR naturels. Table contenant l'ensemble des zones réglementées du PPRn.
Avertissement : Les données diffusées sont informatives et non opposables au tiers. Les données SIG ont été standardisées à partir des données numériques ayant servis à l'élaboration des PPRn approuvés. Nous ne garantissons pas leur exhaustivité et leur exactitude par rapport aux documents opposables. Les documents officiels et opposables aux tiers peuvent être consultés à la Mairie ou à la préfecture.
Origine
2014 : Mise au standard COVADIS des données numériques des PPRn des départements de la région Aquitaine.
Les limites d'une zone réglementée sont représentées sur les documents graphiques du PPR. Les limites réglementaires sont généralement calées sur les phénomènes naturels, qui ne suivent ni le découpage cadastral ni les limites administratives. Un PPRT détermine les limites des différentes zones réglementées en fonction de l'emprise calculée des phénomènes dangereux du site. Certains PPR peuvent parfois contenir des règlements associés à des figurés linéaires ou ponctuels (cavités, axe de ruissellement...). Les primitives graphiques linéaire et ponctuelle sont à utiliser respectivement dans ces cas de figure.
Organisations partenaires
DDTM Pyrénées-Atlantiques
Liens annexes
Facebook
TwitterPour les PPR naturels, le code de l'environnement définit deux catégories de zones (L562-1) : - les zones exposées aux risques, - les zones qui ne sont pas directement exposées aux risques mais sur lesquelles des mesures peuvent être prévues pour éviter d'aggraver le risque. En fonction du niveau d'aléa, chaque zone fait l'objet d'un règlement opposable.
Les règlements distinguent généralement trois types de zones : 1- les « zones d'interdiction de construire », dites « zones rouges », lorsque le niveau d'aléa est fort et que la règle générale est l'interdiction de construire ; 2- les « zones soumises à prescriptions », dites « zones bleues », lorsque le niveau d'aléa est moyen et que les projets sont soumis à des prescriptions adaptées au type d'enjeu ; 3- les zones non directement exposées aux risques mais où des constructions, des ouvrages, des aménagements ou des exploitations agricoles, forestières, artisanales, commerciales ou industrielles pourraient aggraver des risques ou en provoquer de nouveaux, soumises à interdictions ou prescriptions (cf. article L562-1 du Code de l'environnement) . Cette dernière catégorie ne s'applique qu'aux PPR naturels. Table contenant l'ensemble des zones réglementées du PPRn.
Avertissement : Les données diffusées sont informatives et non opposables au tiers. Les données SIG ont été standardisées à partir des données numériques ayant servis à l'élaboration des PPRn approuvés. Nous ne garantissons pas leur exhaustivité et leur exactitude par rapport aux documents opposables. Les documents officiels et opposables aux tiers peuvent être consultés à la Mairie ou à la préfecture.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis data package, LAGOS-NE-LIMNO v1.087.3, is 1 of 5 data packages associated with the LAGOS-NE database-- the LAke multi-scaled GeOSpatial and temporal database. With this release, only this data package is being updated and users are expected to use prior releases of the other types of data. Please see the attached additional documentation for a full description of the changes that have been made for this new release.The data packages that make up LAGOS-NE include the following information on lakes and reservoirs in 17 lake-rich states in the Northeastern and upper Midwestern U.S. (1) LAGOS-NE-LOCUS v1.01: lake location and physical characteristics for all lakes greater than one hectare. (2) LAGOS-NE-GEO v1.05: ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes and for all spatial resolutions, also called ‘zones’ (i.e., ecoregions, states, counties). These geospatial data were created by processing national-scale and publicly-accessible datasets to quantify numerous metrics at multiple spatial resolutions. (3) LAGOS-NE-LIMNO v1.087.3: in-situ measurements of lake water quality from the past three decades for approximately 2,600-12,000 lakes, depending on the variable. This module was created by harmonizing 87 water quality datasets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This module includes variables that are most commonly measured by state agencies and researchers for studying eutrophication. For each water quality data value, we also include metadata related to the sampling program, methods, qualifiers with data flags from the original program (qual, not standardized for LAGOS-NE), censor codes from our quality control procedures (censorcode, standardized for LAGOS-NE), and the date of each sample. (4) LAGOS-NE-GIS v1.0: the GIS data layers for lakes, wetlands, and streams, as well as the spatial resolutions that were used to create the LAGOS-NE-GEO module. (5) LAGOS-NE-RAWDATA: the original 87 datasets of lake water quality prior to processing, the R code that converts the original data formats into LAGOS-NE data format, and the log file from this procedure to create LAGOS-NE. This latter data package supports the reproducibility of the LAGOS-NE-LIMNO data module. Citation for the full documentation of this database: Soranno, P.A., E.G. Bissell, K.S. Cheruvelil, S.T. Christel, S.M. Collins, C.E. Fergus, C.T. Filstrup, J.F. Lapierre, N.R. Lottig, S.K. Oliver, C.E. Scott, N.J. Smith, S. Stopyak, S. Yuan, M.T. Bremigan, J.A. Downing, C. Gries, E.N. Henry, N.K. Skaff, E.H. Stanley, C.A. Stow, P.-N. Tan, T. Wagner, K.E. Webster. 2015. Building a multi-scaled geospatial temporal ecology database from disparate data sources: Fostering open science and data reuse. GigaScience 4:28 https://doi.org/10.1186/s13742-015-0067-4 Citation for the data paper for this database: Soranno, P.A., L.C. Bacon, M. Beauchene, K.E. Bednar, E.G. Bissell, C.K. Boudreau, M.G. Boyer, M.T. Bremigan, S.R. Carpenter, J.W. Carr, K.S. Cheruvelil, S.T. Christel, M. Claucherty, S.M.Collins, J.D. Conroy, J.A. Downing, J. Dukett, C.E. Fergus, C.T. Filstrup, C. Funk, M.J. Gonzalez, L.T. Green, C. Gries, J.D. Halfman, S.K. Hamilton, P.C. Hanson, E.N. Henry, E.M. Herron, C. Hockings, J.R. Jackson, K. Jacobson-Hedin, L.L. Janus, W.W. Jones, J.R. Jones, C.M. Keson, K.B.S. King, S.A. Kishbaugh, J.F. Lapierre, B. Lathrop, J.A. Latimore, Y. Lee, N.R. Lottig, J.A. Lynch, L.J. Matthews, W.H. McDowell, K.E.B. Moore, B.P. Neff, S.J. Nelson, S.K. Oliver, M.L. Pace, D.C. Pierson, A.C. Poisson, A.I. Pollard, D.M. Post, P.O. Reyes, D.O. Rosenberry, K.M. Roy, L.G. Rudstam, O. Sarnelle, N.J. Schuldt, C.E. Scott, N.K. Skaff, N.J. Smith, N.R. Spinelli, J.J. Stachelek, E.H. Stanley, J.L. Stoddard, S.B. Stopyak, C.A. Stow, J.M. Tallant, P.-N. Tan, A.P. Thorpe, M.J. Vanni, T. Wagner, G. Watkins, K.C. Weathers, K.E. Webster, J.D. White, M.K. Wilmes, S. Yuan. 2017. LAGOS-NE: A multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of U.S. lakes. Gigascience 6(12) https://doi.org/10.1093/gigascience/gix101