This layer is derived from the Common Ownership Lots and represents property transactions as they’ve occurred since the implementation of the Vector Property Mapping program in September 2006. A property transaction entails new geometry (split/combination of Lot(s) or property type conversion (from Air Rights, Record, or Tax Lots to Condo lots). The layer contains locations and attributes of archived features (inactive lots – dead lots) and corresponds with Office of Tax and Revenue's Public Extract files (ITSPE). It occurs weekly for the current calendar year and geometry updated when a transaction occurs.
For large areas, like Washington State, download as a file geodatabase. Large data sets like this one, for the State of Washington, may exceed the limits for downloading as shape files, excel files, or KML files. For areas less than a county, you may use the map to zoom to your area and download as shape file, excel or KML, if that format is desired.The Boundary layer consists of lines representing the boundaries of Parcels and Legal Descriptions. (See the metadata for those two layers.) Boundary lines are the places that are surveyed in order to delimit the extent of Parcels and Legal Descriptions. The character and accuracy of Boundary locations is held in the attributes of the Points that are at the ends of Boundary lines. All the boundaries of Parcels and Legal Descriptions are covered by a Boundary line. Currently the Boundary layer has little functionality. The only distinction it makes is between upland boundaries and shorelines. In the future Boundary lines will have a richer set of attributes in order to accommodate cartographic needs to distinguish between types of boundaries.WA Boundaries Metadata
This service depicts National Park Service tract and boundary data that was created by the Land Resources Division. NPS Director's Order #25 states: "Land status maps will be prepared to identify the ownership of the lands within the authorized boundaries of the park unit. These maps, showing ownership and acreage, are the 'official record' of the acreage of Federal and non-federal lands within the park boundaries. While these maps are the official record of the lands and acreage within the unit's authorized boundaries, they are not of survey quality and not intended to be used for survey purposes." As such this data is intended for use as a tool for GIS analysis. It is in no way intended for engineering or legal purposes. The data accuracy is checked against best available sources which may be dated and vary by location. NPS assumes no liability for use of this data. The boundary polygons represent the current legislated boundary of a given NPS unit. NPS does not necessarily have full fee ownership or hold another interest (easement, right of way, etc...) in all parcels contained within this boundary. Equivalently NPS may own or have an interest in parcels outside the legislated boundary of a given unit. In order to obtain complete information about current NPS interests both inside and outside a unit’s legislated boundary tract level polygons are also created by NPS Land Resources Division and should be used in conjunction with this boundary data. To download this data directly from the NPS go to https://irma.nps.gov Property ownership data is compiled from deeds, plats, surveys, and other source data. These are not engineering quality drawings and should be used for administrative purposes only. The National Park Service (NPS) shall not be held liable for improper or incorrect use of the data described and/or contained herein. These data and related graphics are not legal documents and are not intended to be used as such. The information contained in these data is dynamic and may change over time. The data are not better than the original sources from which they were derived. It is the responsibility of the data user to use the data appropriately and consistent within the limitations of geospatial data in general and these data in particular. The related graphics are intended to aid the data user in acquiring relevant data; it is not appropriate to use the related graphics as data. The National Park Service gives no warranty, expressed or implied, as to the accuracy, reliability, or completeness of these data. It is strongly recommended that these data are directly acquired from an NPS server and not indirectly through other sources which may have changed the data in some way. Although these data have been processed successfully on a computer system at the National Park Service, no warranty expressed or implied is made regarding the utility of the data on another system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. This disclaimer applies both to individual use of the data and aggregate use with other data.
"Cadastral Area Boundary is a line layer belonging to Vicmap Property and consists of data representing Victoria's land parcels and properties and is used extensively in Geographic Information Systems (GIS) by the public and private sectors. More Information: https://www.data.vic.gov.au/data/dataset/cadastral-area-boundary-vicmap-property Author: Department of Environment and Primary Industries Owner: Department of Environment and Primary Industries"
This dataset was updated April, 2024.This ownership dataset was generated primarily from CPAD data, which already tracks the majority of ownership information in California. CPAD is utilized without any snapping or clipping to FRA/SRA/LRA. CPAD has some important data gaps, so additional data sources are used to supplement the CPAD data. Currently this includes the most currently available data from BIA, DOD, and FWS. Additional sources may be added in subsequent versions. Decision rules were developed to identify priority layers in areas of overlap.Starting in 2022, the ownership dataset was compiled using a new methodology. Previous versions attempted to match federal ownership boundaries to the FRA footprint, and used a manual process for checking and tracking Federal ownership changes within the FRA, with CPAD ownership information only being used for SRA and LRA lands. The manual portion of that process was proving difficult to maintain, and the new method (described below) was developed in order to decrease the manual workload, and increase accountability by using an automated process by which any final ownership designation could be traced back to a specific dataset.The current process for compiling the data sources includes: Clipping input datasets to the California boundary Filtering the FWS data on the Primary Interest field to exclude lands that are managed by but not owned by FWS (ex: Leases, Easements, etc) Supplementing the BIA Pacific Region Surface Trust lands data with the Western Region portion of the LAR dataset which extends into California. Filtering the BIA data on the Trust Status field to exclude areas that represent mineral rights only. Filtering the CPAD data on the Ownership Level field to exclude areas that are Privately owned (ex: HOAs) In the case of overlap, sources were prioritized as follows: FWS > BIA > CPAD > DOD As an exception to the above, DOD lands on FRA which overlapped with CPAD lands that were incorrectly coded as non-Federal were treated as an override, such that the DOD designation could win out over CPAD.In addition to this ownership dataset, a supplemental _source dataset is available which designates the source that was used to determine the ownership in this dataset.Data Sources: GreenInfo Network's California Protected Areas Database (CPAD2023a). https://www.calands.org/cpad/; https://www.calands.org/wp-content/uploads/2023/06/CPAD-2023a-Database-Manual.pdf US Fish and Wildlife Service FWSInterest dataset (updated December, 2023). https://gis-fws.opendata.arcgis.com/datasets/9c49bd03b8dc4b9188a8c84062792cff_0/explore Department of Defense Military Bases dataset (updated September 2023) https://catalog.data.gov/dataset/military-bases Bureau of Indian Affairs, Pacific Region, Surface Trust and Pacific Region Office (PRO) land boundaries data (2023) via John Mosley John.Mosley@bia.gov Bureau of Indian Affairs, Land Area Representations (LAR) and BIA Regions datasets (updated Oct 2019) https://biamaps.doi.gov/bogs/datadownload.htmlData Gaps & Changes:Known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. Additionally, any feedback received about missing or inaccurate data can be taken back to the appropriate source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.24_1: Input datasets this year included numerous changes since the previous version, particularly the CPAD and DOD inputs. Of particular note was the re-addition of Camp Pendleton to the DOD input dataset, which is reflected in this version of the ownership dataset. We were unable to obtain an updated input for tribral data, so the previous inputs was used for this version.23_1: A few discrepancies were discovered between data changes that occurred in CPAD when compared with parcel data. These issues will be taken to CPAD for clarification for future updates, but for ownership23_1 it reflects the data as it was coded in CPAD at the time. In addition, there was a change in the DOD input data between last year and this year, with the removal of Camp Pendleton. An inquiry was sent for clarification on this change, but for ownership23_1 it reflects the data per the DOD input dataset.22_1 : represents an initial version of ownership with a new methodology which was developed under a short timeframe. A comparison with previous versions of ownership highlighted the some data gaps with the current version. Some of these known gaps include several BOR, ACE and Navy lands which were not included in CPAD nor the DOD MIRTA dataset. Our hope for future versions is to refine the process by pulling in additional data sources to fill in some of those data gaps. In addition, any topological errors (like overlaps or gaps) that exist in the input datasets may thus carry over to the ownership dataset. Ideally, any feedback received about missing or inaccurate data can be taken back to the relevant source data where appropriate, so fixes can occur in the source data, instead of just in this dataset.
Digital line graph (DLG) data are digital representations of cartographic information. DLGs of map features are converted to digital form from maps and related sources. Intermediate-scale DLG data are derived from USGS 1:100,000-scale 30- by 60-minute quadrangle maps. If these maps are not available, Bureau of Land Management planimetric maps at a scale of 1:100,000 are used. Intermediate-scale DLGs are sold in five categories: (1) Public Land Survey System; (2) boundaries; (3) transportation; (4) hydrography; and (5) hypsography. All DLG data distributed by the USGS are DLG-Level 3 (DLG-3), which means the data contain a full range of attribute codes, have full topological structuring, and have passed certain quality-control checks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Provides locations and land boundaries / cadastre of each property within the Adelaide City Council area. Note only contains site designated as common property for Strata and community properties.
This layer can be used to view parcel property boundaries in the County of Burlington, NJ. Note that the property boundaries displayed here are not survey grade and are intended for planning level purposes. Most are based on tax maps which were digitized and then aligned to aerial photography (geo-referenced).
This ownership dataset utilizes a methodology that results in a federal ownership extent that matches the Federal Responsibility Areas (FRA) footprint from CAL FIRE's State Responsibility Areas for Fire Protection (SRA) data. FRA lands are snapped to county parcel data, thus federal ownership areas will also be snapped. Since SRA Fees were first implemented in 2011, CAL FIRE has devoted significant resources to improve the quality of SRA data. This includes comparing SRA data to data from other federal, state, and local agencies, an annual comparison to county assessor roll files, and a formal SRA review process that includes input from CAL FIRE Units. As a result, FRA lands provide a solid basis as the footprint for federal lands in California (except in the southeastern desert area). The methodology for federal lands involves:
This details the boundaries of all properties within the City of Melbourne. A boundary is described as a division between adjacent political entities, tracts of private land, or geographic zones. Boundary lines may be imaginary lines, physical features that follow those lines, or the graphical representation of those lines on a map. Boundary lines between privately owned land parcels are usually called property lines.
A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The longest of the three estimates spans 1770-2010. The dataset presented here takes into account land-cover change due to four major land-use/management activities: (1) cropland expansion and abandonment, (2) pastureland expansion and abandonment, (3) urbanization, and (4) secondary forest regrowth due to wood harvest. Due to uncertainties associated with estimating historical agricultural (crops and pastures) land use, the study uses three widely accepted global reconstruction of cropland and pastureland in combination with common wood harvest and urban land data set to provide three distinct estimates of historical land-cover change and underlying land-use conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and extent to which different ecosystem have undergone changes. The three estimates use a consistent methodology, and start with a common land-cover map during pre-industrial conditions (year 1765), taking different courses as determined by the land-use/management datasets (cropland, pastureland, urbanization and wood harvest) to attain forest area distributions close to satellite estimates of forests for contemporary period. The satellite based estimates of forest area are based on MODIS sensor. All data uses the WGS84 spatial coordinate system for mapping.
More MetadataThis layer identifies existing parcels within Loudoun County and their current Land Use. The existing structures data source is Loudoun County VA, Office of Mapping & Geographic Information's (OMAGI) addressable structure layer for all of Loudoun County, VA. All residential uses, which includes Single Family, Multi-Family and Group Quarter uses, are specified and existing Commercial structures (Offices, Retail, Medical Offices, Data Centers, etc.) are combined into a single Non-Residential use. The other uses specifically identified are HOA (Home owner Association owned parcels), Miscellaneous (no employment generating), and Multi-Use (2 different uses), and Vacant (parcel with no land use).
Map showing the General Plan Land Use for the City of San Marcos. For additional information, please visit the City's website.
City of Philadelphia land use as ascribed to individual parcel boundaries or units of land. Land use is the type of activity occurring on the land such as residential, commercial or industrial. Each unit of land is assigned one of nine major classifications of land use (2-digit code), and where possible a more narrowly defined sub-classification (3-digit code). The land use feature class has been field checked and corrected for the following Planning Districts.
The land inventory is based on several sources. The polygon geography is taken from appraisal district parcel layers merged together. A land use inventory is performed by classifying land according to a coding system that reflects the primary improvements (buildings or structures) on each parcel. Most of the land use information is attached through a GIS Union from past land use inventories. Undeveloped parcels are checked against building permit, aerial photos, and appraisal records, generally collected during the fall, or when data was made available. Information is collected only in the City of Austin’s Full, Limited Purpose, and Extra-territorial jurisdictions, and not entire counties.
Geospatial data about Miami-Dade County, Florida Property Boundaries. Export to CAD, GIS, PDF, CSV and access via API.
The 2020 Generalized Land Use Inventory dataset encompasses the seven county Twin Cities (Minneapolis and St. Paul) Metropolitan Area in Minnesota. The dataset was developed by the Metropolitan Council, a regional governmental organization that deals, in part, with regional issues and long range planning for the Twin Cities area. The data were interpreted from April 2020 air photos, with additional assistance from county parcel data and assessor's information, Internet information, field checks , and community review.
The following generalized land use classes are used (some of which have subclasses):
Single Family Residential
Multifamily Residential
Office
Retail and Other Commercial
Mixed Use
Industrial and Utility
Extractive
Institutional
Park, Recreational, or Preserve
Golf Course
Major Highway
Railway
Airport
Agriculture
Undeveloped
Water
See Section 5 of the metadata for a detailed description of each of these land use categories and available subcategories.
Note: Although this dataset does contain an 'Undeveloped' land category, this dataset does not attempt to delineate what lands might be considered developable. The definition of that category can be found in Section 5 of this metadata.
More information about the Metropolitan Council's generalized land use data can be found here Landuse Notes
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is available on Brisbane City Council’s open data website – data.brisbane.qld.gov.au. The site provides additional features for viewing and interacting with the data and for downloading the data in various formats.
This dataset combines Brisbane City Council property information with the Queensland Government Digital Cadastral Database (DCDB) to show property holdings in Brisbane City Council area.
A property holding is a Council-defined and managed information entity. Its boundaries are generally based on land parcels. A property holding may consist of one or multiple land parcels.
The Digital Cadastral Database (DCDB) is the spatial representation of every current parcel of land in Queensland, and its legal Lot on Plan description and relevant attributes. It provides the map base for systems dealing with land related information. The DCDB is considered to be the point of truth for the graphical representation of property boundaries. It is not the point of truth for the legal property boundary or related attribute information, this will always be the plan of survey or the related titling information and administrative data sets.
This is the INSPIRE Existing Land Use data set of the Netherlands. It is based on the topographical map of the Netherlands (BRT) and aerial photo's of summer of 2017.
Land cover has been interpreted from Satellite images and field checked, other information has been digitized from topographic maps
Members informations:
Attached Vector(s):
MemberID: 1
Vector Name: Land use
Source Map Name: SPOT Pan
Source Map Scale: 50000
Source Map Date: 1989/90
Projection: Polyconic on Modified Everest Ellipsoid
Feature_type: polygon
Vector
Land use maps, interpreted from SPOT panchromatic imagery and field
checked (18 classes)
Members informations:
Attached Vector(s):
MemberID: 2
Vector Name: Administrative boundaries
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: polygon
Vector
Dzongkhags (Districts) and Gewogs
Members informations:
Attached Vector(s):
MemberID: 3
Vector Name: Roads
Source Map Name: topo sheets
Source Map Scale: 50000
Source Map Date: ?
Feature_type: lines
Vector
Road network
Attached Report(s)
Member ID: 4
Report Name: Atlas of Bhutan
Report Authors: Land use planning section
Report Publisher: Ministry of Agriculture, Thimpu
Report Date: 1997-06-01
Report
Land cover (1:250000) and area statistics of 20 Dzongkhags
This layer is derived from the Common Ownership Lots and represents property transactions as they’ve occurred since the implementation of the Vector Property Mapping program in September 2006. A property transaction entails new geometry (split/combination of Lot(s) or property type conversion (from Air Rights, Record, or Tax Lots to Condo lots). The layer contains locations and attributes of archived features (inactive lots – dead lots) and corresponds with Office of Tax and Revenue's Public Extract files (ITSPE). It occurs weekly for the current calendar year and geometry updated when a transaction occurs.