The U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) collaborated on the creation of the global land datasets using Landsat data from 1972 through 2008. NASA and the USGS have again partnered to develop the Global Land Survey 2010 (GLS2010), a new global land data set with core acquisition dates of 2008-2011. This dataset consists of both Landsat TM and ETM+ images that meet quality and cloud cover standards established by the earlier GLS collections. Data acquired in 2011 were used to fill areas of low image quality or excessive cloud cover.
This dataset includes high quality (800 Dots Per Inch - DPI), 24 bit color images of Minnesota's original Public Land Survey (PLS) plats created during the first government land survey of the state from 1848 to 1907. Currently housed at the Office of the Secretary of State, these plats were created by the U.S. Surveyor General's Office. This collection of more than 3,600 maps also includes later General Land Office (GLO) and the Bureau of Land Management (BLM) maps - up to the year 2001.
Minnesota's survey plat maps serve as the fundamental legal records for real estate in the state; all property titles and descriptions stem from them. They also serve as an essential resource for surveyors and as an analytical tool for the state's physical geography prior to European settlement. Finally, they serve as a testimony to years and years of hard work by the surveying community, often under challenging conditions.
In recent years the deteriorating physical condition of the older maps and the needs of technologically more sophisticated researchers, who require access to the maps, have made handling the original paper records increasingly less practical. To meet this challenge, the Office of the Secretary of State, the State Archives of the Minnesota Historical Society, the Minnesota Department of Transportation, MnGeo (formerly the Land Management Information Center - LMIC) and the Minnesota Association of County Surveyors collaborated in a digitization project which produced images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes worth of data. Funding was provided by the Minnesota Department of Transportation.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
The Surveying and Mapping Services industry in Canada has weathered uncertain conditions as downstream industries including residential, commercial, industrial construction and government authorities, fared with volatility brought on by the COVID-19 pandemic. The industry's performance is largely tied to developments in residential and nonresidential construction markets, which fuel both private- and public-sector spending.As Canadian oil, gas and mining companies cut back spending on exploration and development projects in response to falling commodity prices, and construction stalled in resource-rich provinces, demand for surveying and mapping services for these projects fell. While growth from the residential construction market helped offset some losses, rising interest intended to offset rising inflation have hampered residential demand. Thus, even as energy prices came roaring back, many surveyors saw a reduction in demand. Over the five years to 2023, industry revenue has been contracting at a CAGR of 1.7% and is expected to reach $1.7 billion, including an expected drop of 3.2% over the current year.The return to growth of downstream construction markets will likely keep industry demand afloat moving forward. In addition to solid demand from industrial building construction as commodity prices remain high, housing market expansion will stimulate demand for cadastral, property line and construction surveying. The continued adoption of new technology will also enable companies to realize new efficiencies and improve the quality of their services, expanding sizable profit margins further. Industry revenue is forecast to rise at a CAGR of 1.2% to $1.8 billion over the five years to 2028.
Minnesota's original public land survey plat maps were created between 1848 and 1907 during the first government land survey of the state by the U.S. Surveyor General's Office. This collection of more than 3,600 maps includes later General Land Office (GLO) and Bureau of Land Management maps up through 2001. Scanned images of the maps are available in several digital formats and most have been georeferenced.
The survey plat maps, and the accompanying survey field notes, serve as the fundamental legal records for real estate in Minnesota; all property titles and descriptions stem from them. They also are an essential resource for surveyors and provide a record of the state's physical geography prior to European settlement. Finally, they testify to many years of hard work by the surveying community, often under very challenging conditions.
The deteriorating physical condition of the older maps (drawn on paper, linen, and other similar materials) and the need to provide wider public access to the maps, made handling the original records increasingly impractical. To meet this challenge, the Office of the Secretary of State (SOS), the State Archives of the Minnesota Historical Society (MHS), the Minnesota Department of Transportation (MnDOT), MnGeo and the Minnesota Association of County Surveyors collaborated in a digitization project which produced high quality (800 dpi), 24-bit color images of the maps in standard TIFF, JPEG and PDF formats - nearly 1.5 terabytes of data. Funding was provided by MnDOT.
In 2010-11, most of the JPEG plat map images were georeferenced. The intent was to locate the plat images to coincide with statewide geographic data without appreciably altering (warping) the image. This increases the value of the images in mapping software where they can be used as a background layer.
These are the cadastral reference features that provide the basis and framework for parcel mapping and for other mapping. This feature data set contains PLSS and Other Survey System data. The other survey systems include subdivision plats and those types of survey reference systems. This feature data set also include feature classes to support the special conditions in Ohio. This data set represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. This data set includes the following: PLSS Fully Intersected (all of the PLSS feature at the atomic or smallest polygon level), PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non rectangular components of the PLSS) Meandered Water, Corners and Conflicted Areas (known areas of gaps or overlaps between Townships or state boundaries). The Entity-Attribute section of this metadata describes these components in greater detail.
https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Revenue for the Surveying and Mapping Services industry has been volatile in the years since the pandemic. As the economy emerged from a short-lived downturn, surveyors were buoyed by strong residential construction resulting from record-low interest rates. Investment from the commercial sector also expanded as corporate profit soared. However, as the Federal Reserve raised the cost of borrowing to combat high inflation, homebuying and existing home improvements declined, severely inhibiting the residential sector and prompting a multi-year revenue decline for the industry. While interest rates have remained elevated, the 2021 Bipartisan Infrastructure Law has pumped millions of dollars into highway construction, civil engineering, mineral surveying and geospatial data processing, rewarding select surveying and mapping companies with hefty contracts. Thus, industry revenue is anticipated to grow at a CAGR of 2.0% through 2025, even as interest rates remain elevated. In 2025, the industry is projected to grow 1.8% with revenue totalling $11.5 billion.Advances in technology are revolutionizing surveying by enabling faster, more accurate data collection and processing. Mobile mapping tools, UAVs, 3D laser scanning and AI-driven analytics are streamlining workflows, reducing field time and expanding the range of services companies offer. These innovations are supporting complex projects in construction, infrastructure and smart city planning, while cloud-based GIS and automation are improving productivity. As these tools are becoming industry standards, companies that have been quick to adopt them have gained a competitive edge. This increased competition has left laggards behind, making innovation incumbent to sustaining profitability.The industry will continue to see modest expansion as steady economic growth will increase demand from the nonresidential sector. However, economic uncertainty and the expectation of conservative monetary policy by the Federal Reserve will continue to keep interest rates elevated, tempering the residential housing market. Still, surveyors will benefit from new home construction that is expected to rise above historical averages, especially in regions where job growth will support relocation. Through 2030, industry revenue is forecast to expand at a CAGR of 1.1% to reach $12.2 billion.
This is collection of DWR County Land Use Surveys. You may scroll the list below to download any individual survey of interest. Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer. For Statewide Crop Mapping follow the link below : https://data.cnra.ca.gov/dataset/statewide-crop-mapping For Region Land Use Surveys follow link below: https://data.cnra.ca.gov/dataset/region-land-use-surveys Questions about the survey data may be directed to Landuse@water.ca.gov.
description: The Missouri Public Land Survey System is a 1:24,000 scale geographic information systems (GIS) polygon layer based on the 7.5' United States Geological Survey (USGS) topographic maps.; abstract: The Missouri Public Land Survey System is a 1:24,000 scale geographic information systems (GIS) polygon layer based on the 7.5' United States Geological Survey (USGS) topographic maps.
Layers in this dataset represent Public Land Survey System subdivisions for Canadian County. Included are Townships, Sections, Quarter Sections and Government Lots. This data was created from 2019 to 2021 as part of a project to update county parcel data in partnership with ProWest & Associates (https://www.prowestgis.com/) and CEC Corporation (https://www.connectcec.com/). Corners were located to the quarter section level and additional corners were determined for the South Canadian River meanders based on the original government surveys. Quarter section corners were located using Certified Corner Records ( filed by Oklahoma licensed professional surveyors with the Oklahoma Department of Libraries where those records included coordinates. When a corner record could not be found or did not include coordinates, other interpolation methods were employed. These included connecting known corner record locations to unknown corners using data from filed subdivisions or from highway plans on record with the Oklahoma Department of Transportation. Where no corner records with coordinates were available and no interpolation methods could be used, aerial inspection was used to locate corners as the last option.Corner location accuracy varies as the method of locating the corner varies. For corners located using Certified Corner Records, accuracy is high depending on the age of the corner record and can possibly be less than 1 U.S. Foot. For corners located using interpolation methods, accuracy depends on the additional material used to interpolate the corner. In general, newer subdivisions and highway plans yield higher accuracy. For meander corners located using original government surveys, accuracy will be low due to the age of those surveys which date to the 1870's at the earliest. Additionally, corners that were located with aerials as the last available option cannot be assumed to be accurate.The data was built at the quarter section level first by connecting located corners and larger subdivisions were created from the quarter sections. For townships that extend into Grady County, township lines were only roughly located outside sections not in Canadian County.
In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed
The resource contains general environment data from the ABR, Inc. – Environmental Research and Services (ABR) 2019 ground surveys, and the 2013 Alaska Ecoscience Hula Hula & Dalton Hwy dataset. The ABR 2019 aerial survey data and 1987-1992 U.S. Fish and Wildlife Service plots from Jorgenson et al. (1994) are included here, but only have a land cover class assigned. This is because the Jorgenson et al. (1994) dataset did not include general environment data. See the deliverable file “abr_anwr_ns_lc_veg_aerial_deliverable.csv” for general environment data from the 2019 ABR aerial surveys. The data in this resource relates to the other data deliverable resources through the project_id and plot_id fields.
This data layer is an element of the Oregon GIS Framework. This theme contains PLS lines for the State of Oregon. This PLS theme includes donation claims lands. Attributes in this theme show Township Range and Section values.
PLSS Intersected is all of the PLSS feature at the atomic or smallest polygon level. This dataset represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular surveys. The primary source for the data is cadastral survey records housed by the BLM supplemented with local records and geographic control coordinates from states, counties as well as other federal agencies such as the USGS and USFS. The data has been converted from source documents to digital form and transferred into a GIS format that is compliant with FGDC Cadastral Data Content Standards and Guidelines for publication. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance.The service referred in this item is published by BLM. Please refer to the metadata for contact information.Contact: GIS.Librarian@FloridaDEP.gov
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Feature layer of locations corresponding to surveys that are produced by Vermont licensed land surveyors and submitted—as .pdf copies—to the Vermont Land Survey Library.Locations are attributed with information such as name of surveyor, date of survey, survey type (e.g., subdivision), and municipality. When the feature layer is opened in ArcGIS Online, the .pdf copies (as feature attachments) can be viewed/downloaded.Effective January 1, 2020 and as stated in27 V.S.A. § 341, surveys are required for property line changes in Vermont. Licensed land surveyors who produce the surveys are to submit a digital copy of them to the library in.pdf format (see27 V.S.A. §1401 and 27 V.S.A. §1403).The copies of surveys are for public reference only, with the originals that most often reside with the Municipality remaining the official documents. The purpose of the land survey library is to improve knowledge of who owns what lands where throughout Vermont.For more information about land surveying in Vermont, see theVermont Society of Land Surveyors (VSLS) and the Vermont Survey Law Manual (PDF).
The Mapping Control Database (MCPD) is a database of mapping control covering Montana. The control were submitted by registered land surveyors or mapping professionals.
Full metadata available at https://mslservices.mt.gov/Geographic_Information/Data/DataList/datalist_Details.aspx?did=62c565ec-de6e-11e6-bf01-fe55135034f3.
This data set represents a GIS Version of the Public Land Survey System (PLSS) including both rectangular and non-rectangular surveys. These are the cadastral reference features that provide the basis and framework for mapping. This feature data set contains PLSS and Other Survey System data. The other survey systems include subdivision plats and those types of survey reference systems. This PLSS dataset was compiled by IDWR in 2016/2017 showing Public Land Survey System (PLSS) data from a variety of sources, including BLM's CadNSDI, IDL's edits to the CadNSDI alongside alignments to data from a variety of counties. Source and Edit information are provided in the QQ layer.
This coverage contains the section lines for the Public Land Survey System (PLSS). These lines form polygons which are labelled for PLSS township, range and section number. Coordinates were digitized from U. S. Geological Survey 7.5' topographic maps (paper copies) using a digitizing program developed in-house by the Geological Survey Bureau, Iowa DNR. The digitizing tablet accuracy was 1/50 inch. Section lines from individual quads were combined and edited using PC Arc/Info.
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Public Land Survey System (PLSS) Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain boundaries for Townships, First Divisions, and Second Divisions.
Global Land Survey 1990 images were acquired from 1987 to 1997 by Landsat 4-5 TM. The U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) collaborated on the creation of the global land datasets using Landsat data from 1972 through 2008. Each of these global datasets was created from the primary Landsat sensor in use at the time: the Multispectral Scanner (MSS) in the 1970s, the Thematic Mapper (TM) in 1990, the Enhanced Thematic Mapper Plus (ETM+) in 2000, and a combination of TM and ETM+, as well as EO-1 ALI data, in 2005.
This dataset comes from the Department of Licensing and Regulatory Affairs' Office of Land Survey and Remonumentation (OLSR). See Act 345 of 1990: State Survey and Remonumentation Act for more information.The system of record was queried for approved locations where grid coordinates were provided. Records with coordinates outside the state's geographical boundary were retained (34 locations). The columns "DMS LAT" and "DMS LONG" were added to the extraction table and populated with data from fields "Latitude N" and "Longitude W" and formatted to DMS2. The data was exported as feature class using geoprocessing tool "Convert Coordinate Notation," geographic coordinate system WGS 1984 Web Mercator (auxiliary sphere).This dataset was last updated June 6, 2022, with quarterly updates to begin in 2023.More Metadata
The U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA) collaborated on the creation of the global land datasets using Landsat data from 1972 through 2008. NASA and the USGS have again partnered to develop the Global Land Survey 2010 (GLS2010), a new global land data set with core acquisition dates of 2008-2011. This dataset consists of both Landsat TM and ETM+ images that meet quality and cloud cover standards established by the earlier GLS collections. Data acquired in 2011 were used to fill areas of low image quality or excessive cloud cover.