Historic land uses on lots that were vacant, privately owned, and zoned for manufacturing in 2009. Information came from a review of several years of historical Sanborn maps over the past 100 years. When the SPEED 1.0 mapping application was created in 2009, OER had its vendor examine historic land use maps on vacant, privately-owned, industrially-zoned tax lots. Up to seven years of maps for each lot were examined, and information was recorded that indicated industrial uses or potential environmental contamination such as historic fill. Data for an additional 139 lots requested by community-based organizations was added in 2014. Each record represents the information from a map from a particular year on a particular tax lot at that time. Limitations of funding determined the number of lots included and entailed that not all years were examined for each lot.
A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The longest of the three estimates spans 1770-2010. The dataset presented here takes into account land-cover change due to four major land-use/management activities: (1) cropland expansion and abandonment, (2) pastureland expansion and abandonment, (3) urbanization, and (4) secondary forest regrowth due to wood harvest. Due to uncertainties associated with estimating historical agricultural (crops and pastures) land use, the study uses three widely accepted global reconstruction of cropland and pastureland in combination with common wood harvest and urban land data set to provide three distinct estimates of historical land-cover change and underlying land-use conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and extent to which different ecosystem have undergone changes. The three estimates use a consistent methodology, and start with a common land-cover map during pre-industrial conditions (year 1765), taking different courses as determined by the land-use/management datasets (cropland, pastureland, urbanization and wood harvest) to attain forest area distributions close to satellite estimates of forests for contemporary period. The satellite based estimates of forest area are based on MODIS sensor. All data uses the WGS84 spatial coordinate system for mapping.
U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 km2 in the Northern Basin and Range Ecoregion to a high of 78,782 km2 in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it is collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format. U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 square km in the Northern Basin and Range Ecoregion to a high of 78,782 square km in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it’s collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2024 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2024. Key Properties Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryAnalysis: Optimized for analysisClass Definitions: ValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Usage Information and Best PracticesProcessing TemplatesThis layer includes a number of preconfigured processing templates (raster function templates) to provide on-the-fly data rendering and class isolation for visualization and analysis. Each processing template includes labels and descriptions to characterize the intended usage. This may include for visualization, for analysis, or for both visualization and analysis. VisualizationThe default rendering on this layer displays all classes.There are a number of on-the-fly renderings/processing templates designed specifically for data visualization.By default, the most recent year is displayed. To discover and isolate specific years for visualization in Map Viewer, try using the Image Collection Explorer. AnalysisIn order to leverage the optimization for analysis, the capability must be enabled by your ArcGIS organization administrator. More information on enabling this feature can be found in the ‘Regional data hosting’ section of this help doc.Optimized for analysis means this layer does not have size constraints for analysis and it is recommended for multisource analysis with other layers optimized for analysis. See this group for a complete list of imagery layers optimized for analysis.Prior to running analysis, users should always provide some form of data selection with either a layer filter (e.g. for a specific date range, cloud cover percent, mission, etc.) or by selecting specific images. To discover and isolate specific images for analysis in Map Viewer, try using the Image Collection Explorer.Zonal Statistics is a common tool used for understanding the composition of a specified area by reporting the total estimates for each of the classes. GeneralIf you are new to Sentinel-2 LULC, the Sentinel-2 Land Cover Explorer provides a good introductory user experience for working with this imagery layer. For more information, see this Quick Start Guide.Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
NOTICE TO PROVISIONAL 2023 LAND USE DATA USERS: Please note that on December 6, 2024 the Department of Water Resources (DWR) published the Provisional 2023 Statewide Crop Mapping dataset. The link for the shapefile format of the data mistakenly linked to the wrong dataset. The link was updated with the appropriate data on January 27, 2025. If you downloaded the Provisional 2023 Statewide Crop Mapping dataset in shapefile format between December 6, 2024 and January 27, we encourage you to redownload the data. The Map Service and Geodatabase formats were correct as posted on December 06, 2024.
Thank you for your interest in DWR land use datasets.
The California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
HILDA+ (HIstoric Land Dynamics Assessment+) is a global dataset on annual land use/cover change between 1960-2019 at 1 km spatial resolution. It is based on a data-driven reconstruction approach and integrates multiple open data streams (from high-resolution remote sensing, long-term land use reconstructions and statistics). It covers six generic land use/cover categories: 1: Urban areas, 2: Cropland, 3: Pasture/rangeland, 4: Forest, 5: Unmanaged grass/shrubland, 6: Sparse/no vegetation. […]
A generalized dataset of existing land use in the District of Columbia as existed during its most recent extract of the common ownership lots. This dataset is different from the Comprehensive Plan - Future Land Use, which shows land use as envisioned in the latest version of DC’s Comprehensive Plan. The primary land use categories used in this dataset are similar, but not identical. The Office of the Chief Technology Officer (OCTO) compared two datasets to create this generalized existing land use data. The data source identifying property use is the Property Use Code Lookup from the Office of Tax and Revenue (OTR). An index provided by the Office of Planning assigns each OTR property use code with a “primary land use” designation. Through an automated process, the common ownership lots were then joined with this index to create the Existing Land Use. Only properties with an assigned use code from OTR are categorized. Other properties without a use code were left as NULL. Many of these tend to be public lands such as national parks. Refer to https://opendata.dc.gov/pages/public-lands.This dataset has no legal status and is intended primarily as a resource and informational tool. The Office of the Chief Technology Officer anticipates replicating this work annually.
This dataset is the third (2013) in a series of three 2-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.
This dataset shows specific areas of land use/cover conversion in the Chesapeake Bay Watershed during the period 2013/14 to 2017/18. Change in land use/cover from 2013/14 to 2017/18 was interpreted by translating changes in land cover to changes in land use consistent with the 54 unique land use/cover classes in the 2017/18 land use dataset. Changes in land cover were primarily based on multi-date LiDAR imagery if available followed by multi-date NAIP imagery (available for all counties). Similar rules and logic used to classify the 2013/14 land cover data were applied to the change objects to produce a comparable land cover dataset for 2017/18. While some changes in land cover translate directly into changes in land use (e.g., impervious structures), others had to be interpreted based on context (e.g., small fragmented patches of tree canopy reconstituted as forest in 2013/14; turf grass in a newly developed parcel interpreted as cropland prior to development in 2013/14). Transitions between turf grass, cropland, pasture, and natural succession are not evident in the land cover data but are evident in the land use data. For this reason, the extent of land use change is greater than the extent of land cover change. For more information on input data please see: https://docs.google.com/spreadsheets/d/1e0Uy7DVUe_bXY4jJ1TUPUFvwNs9QbyHrSRY8JQs5GxE/edit?usp=sharing For detailed methods and documentation, please see: https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/
This dataset (2017-2023) is a compilation of the Land Use/Land Cover datasets created by the 5 Water Management Districts in Florida based on imagery -- Northwest Florida Water Management District (NWFWMD) 2022.Bay (1/4/2022 – 3/24/2022), Calhoun (1/7/2022 – 1/18/2022),Escambia (11/13/2021 – 1/15/2021), Franklin (1/7/2022 – 1/18/2022), Gadsden (1/7/2022 – 1/16/2022), Gulf (1/7/2022 – 1/14/2022), Holmes (1/8/2022 – 1/18/2022), Jackson (1/7/2022 – 1/14/2022), Jefferson (1/7/2022 – 2/16/2022), Leon (February 2022), Liberty (1/7/2022 – 1/16/2022), Okaloosa (10/31/2021 – 2/13/2022), Santa Rosa (10/26/2021-1/17/2022), Wakulla (1/7/2022 – 1/14/2022), Walton (1/7/2022-1/14/2022), Washington (1/13/2022 – 1/19/2022).Suwannee River Water Management District (SRWMD) 2019-2023.(Alachua 20200102-20200106), (Baker 20200108-20200126), (Bradford 20181020-20190128), (Columbia 20181213-20190106), (Gilchrist 20181020-20190128), (Levy 20181020-20190128), (Suwannee 20181217-20190116), (Union 20181020-20190128).(Dixie 12/17/2021-01/29/2022), (Hamilton 12/17/2021-01/29/2022), (Jefferson 01/07/2022-02/16/2022), (Lafayette 12/17/2021-01/29/2022), (Madison 12/17/2021-01/29/2022), (Taylor 12/17/2021-01/29/2022.Southwest Florida Water Management District (SWFWMD) 2020. South Florida Water Management District (SFWMD) 2021-2023.St. John's River Water Management District (SJRWMD) 2020.Year Flight Season Counties:2020 (Dec. 2019 - Mar 2020) Alachua, Baker, Clay, Flagler, Lake, Marion, Osceola, Polk, Putnam.2021 (Dec. 2020 - Mar 2021) Brevard, Indian River, Nassau, Okeechobee, Orange, St. Johns, Seminole, Volusia. 2022 (Dec. 2021 - Mar 2022) Bradford, Union. Codes are derived from the Florida Land Use, Cover, and Forms Classification System (FLUCCS-DOT 1999) but may have been altered to accommodate region differences by each of the Water Management Districts.
Land Use Planning Areas
National Land Cover Dataset 1992 (NLCD1992) is a 21-class land cover classification scheme that has been applied consistently across the lower 48 United States at a spatial resolution of 30 meters. NLCD92 is based primarily on the unsupervised classification of Landsat Thematic Mapper (TM) circa 1990's satellite data. Other ancillary data sources used to generate these data included topography, census, and agricultural statistics, soil characteristics, and other types of land cover and wetland maps. NLCD1992 is the only NLCD dataset that can be downloaded by state and by user defined area from the MRLC Consortium Viewer.
These tabular data are the summarization of land use/land cover related variables within the Chesapeake Bay watershed using the xstrm methodology bringing these data to the 1:24,000 scale. Variables being counted as land use/land cover related include all land use and land cover data. This also contains datasets that are split off or combined from source data (eg. agriculture or impervious only datasets combined from agriculture or impervious land use/land cover classes). Outputs consist of tabular comma-separated values files (CSVs), and parquet formatted files for both the local catchment and network summaries linked to the National Hydrography Dataset Plus High-Resolution (NHDPlus HR) framework by NHDPlus ID. Local catchments are defined as the single catchment the data is summarized within. Network accumulation summaries were completed for each of these catchments and their respective upstream catchments. The summarized data tables are structured as a single column representing the catchment id values (ie. nhdplusid) and the remaining columns consisting of the summarized variables. The downstream network summary type is not present within the dataset as no summaries were conducted using that summary type. Additionally, for a full description of the variables included within these summaries see xstrm_nhdhr_lulc_chesapeake_baywide_datadictionary.csv in the attached files. The xstrm local summary methodology takes either raster or point data as input then summarizes those data by "zones" (hereafter referred to as catchment(s)), in this case the NHDPlus HR catchments. The network summaries then take the results from the local summaries and calculates the desired network summary statistic for the local catchment and its respective upstream or downstream catchments. As a note concerning use of these data, any rasters summarized within this process only had their cells included within a catchment if the center of the raster cell fell within the catchment boundary. However, the resolution of the input raster data for these summaries was considered to provide completely adequate coverage of the summary catchments using this option and given computing power limitations. If a confirmed complete coverage of a catchment is desired (even if a raster cell only is minimally included within the catchment) then it is recommended to rerun the xstrm summary process with the "All Touched" option set to True. These data were updated in September of 2024 where several variables unnecessary to the use of the data summaries were removed, incorrectly calculated area variables and all dependent variables were corrected, and several new variables were added to the dataset. See xstrm_nhdhr_lulc_chesapeake_baywide_versionhistory.txt for further details. Further information on the Xstrm summary process can be found at the Xstrm software release pages: Xstrm: Wieferich, D.J., Williams, B., Falgout, J.T., Foks, N.L. 2021. xstrm. U.S. Geological Survey software release. https://doi.org/10.5066/P9P8P7Z0. Xstrm Local: Wieferich, D.J., Gressler B., Krause K., Wieczorek M., McDonald, S. 2022. xstrm_local Version-1.1.0. U.S. Geological Survey software release. https://doi.org/10.5066/P98BOGI9.
This 54-class land use/land cover data was created by translating land cover into land use using a combination of ancillary data, spatial rules, and regionally-specific parameters. Vector image segments derived from National Agriculture Imagery Program (NAIP) imagery with object-oriented classification software and attributed with land cover classes was intersected with county tax parcel data, creating the base input for field and feature delineation. Additional ancillary data used in the analysis include: landfills, active and abandoned mines, roads, railroads, County land use, NASS Cropland Data Layer, USGS National LAnd Cover Dataset, AI-derived solar fields, timber harvest permits, USFWS National Wetland Inventory, and other data. The classification rules and process was implemented iteratively to allow for review, refinement, and quality assurance by local stakeholders and regional experts. For more information on input data please see: https://docs.google.com/spreadsheets/d/1e0Uy7DVUe_bXY4jJ1TUPUFvwNs9QbyHrSRY8JQs5GxE/edit?usp=sharing For detailed discussion of methods and ancillary data used in the process, please see: https://www.chesapeakeconservancy.org/conservation-innovation-center/high-resolution-data/lulc-data-project-2022/
http://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
This is the INSPIRE Existing Land Use data set of the Netherlands. It is based on the topographical map of the Netherlands (BRT) and aerial photo's of summer of 2017.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset consists of raster geotiff outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration goals. We parameterized our models based on close interpretation of these four scenario narratives to best reflect stakeholder interests, adding a baseline Historical Business-As-Usual scenario (HBAU) for comparison. For these f ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The annual land cover data of Afghanistan (2000-2018) have been created through the National Land Cover Monitoring System (NLCMS) for Afghanistan. The system uses freely available remote-sensing data (Landsat) and a cloud-based machine learning architecture in the Google Earth Engine (GEE) platform to generate land cover maps on an annual basis using a harmonized and consistent classification system.
The NLCMS is developed by International Centre for Integrated Mountain Development (ICIMOD) together with Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) and National Statistic and Information Authority (NSIA). The NLCMS system is customized from the Regional Land Cover Monitoring System (RLCMS) which is a collaborative effort between SERVIR-HKH at ICIMOD and SERVIR-Mekong at the Asian Disaster Preparedness Center (ADPC), with co-development partners - the United States Forest Services (USFS), SilvaCarbon, and Global Land Analysis and Discovery (GLAD) group at the University of Maryland.
WELDLCLUC.015 was decommissioned on December 2, 2019. The Web-Enabled Landsat Data (WELD) 5-year Land Cover Land Use Change (LCLUC) is a composite of 30 meter (m) land use land change product for the contiguous United States (CONUS). The data were generated from five years of consecutive growing season WELD weekly composite inputs from April 15, 2006, to November 17, 2010. WELD data are created using Landsat Thematic Mapper Plus (ETM+) Terrain Corrected data. This product includes data about tree cover loss and bare ground gain, which are composited over the five year period. WELD LCLUC is distributed in Hierarchical Data Format 4 (HDF4).The WELD project is funded by the National Aeronautics and Space Administration (NASA) and is a collaboration between the United States Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center and the South Dakota State University (SDSU) Geospatial Sciences Center of Excellence (GSCE). Known Issues WELD Version 1.5 known issues can be found in the WELD Version 1.5 User Guide.Improvements/Changes from Previous Version Version 1.5 is the original version.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table provides information about the land use of the area of the Netherlands and the changes in land use.
Data available from: 1996.
Status of the figures: The figures in this table are final.
Changes as of 26 April 2023: Addition of 2017 figures.
This table is based on the Bestand Bodemgebruik (BBG), which literally translates as the ‘land use file’. For intervening base years without a BBG, this table just presents total area statistics for the presented regions.
Previously published base years in this table are never revised for corrections established when a newer BBG-edition is produced. Such corrections consist of corrections of earlier misinterpretations and of improved interpretations based on new sources. The corrections are recorded in the so-called Mutatiebestand (the mutations file) which is a digital map, being a part of each BBG publication. See Bestand Bodemgebruik for further information on correction of the land use statistics and for available publications.
As of reporting year 2016, Statistics Netherlands no longer publishes data on metropolitan agglomerations and urban regions. Various social developments have rendered the philosophy and methodology underlying the delineation outdated. It furthermore appears that other agencies are using a different classification of metropolitan agglomerations and urban regions depending on the area of application. This means there is no longer a consensus on which standard applies. The metropolitan agglomerations and urban regions will not be published anymore from 2015 onwards as a default regional figure.
When will new figures be published? After the addition of the 2017 land use figures all updates to this table will be stopped.
The methodology of the land use statistics, as it has been in use up to the 2017-edition, is being redesigned. See for further information on this redesign and the availability of land use statistics based on the new methodology the web page Bestand Bodemgebruik.
The land inventory is based on several sources. The polygon geography is taken from appraisal district parcel layers merged together. A land use inventory is performed by classifying land according to a coding system that reflects the primary improvements (buildings or structures) on each parcel. Most of the land use information is attached through a GIS Union from past land use inventories. Undeveloped parcels are checked against building permit, aerial photos, and appraisal records, generally collected during the fall, or when data was made available. Information is collected only in the City of Austin’s Full, Limited Purpose, and Extra-territorial jurisdictions, and not entire counties.
Historic land uses on lots that were vacant, privately owned, and zoned for manufacturing in 2009. Information came from a review of several years of historical Sanborn maps over the past 100 years. When the SPEED 1.0 mapping application was created in 2009, OER had its vendor examine historic land use maps on vacant, privately-owned, industrially-zoned tax lots. Up to seven years of maps for each lot were examined, and information was recorded that indicated industrial uses or potential environmental contamination such as historic fill. Data for an additional 139 lots requested by community-based organizations was added in 2014. Each record represents the information from a map from a particular year on a particular tax lot at that time. Limitations of funding determined the number of lots included and entailed that not all years were examined for each lot.