100+ datasets found
  1. a

    Sentinel-2 10m Land Use Land Cover Time Series

    • wfp-demographic-analysis-usfca.hub.arcgis.com
    • opendata.rcmrd.org
    • +11more
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial Analysis Lab (GsAL) at USF (2024). Sentinel-2 10m Land Use Land Cover Time Series [Dataset]. https://wfp-demographic-analysis-usfca.hub.arcgis.com/content/42945cf091f84444ab43c9850959edc3
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset authored and provided by
    Geospatial Analysis Lab (GsAL) at USF
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

  2. U

    State Class Rasters (Land Use and Land Cover per Year and Scenario)

    • data.usgs.gov
    • catalog.data.gov
    Updated Jul 2, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Class Rasters (Land Use and Land Cover per Year and Scenario) [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:60cb925bd34e86b938a3a96f
    Explore at:
    Dataset updated
    Jul 2, 2021
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Tamara Wilson; Elliott Matchett; Kristin Byrd; Erin Conlisk; Matthew Reiter; Lorraine Flint; Alan Flint; Monica Moritsch; Cynthia Wallace
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2011 - 2101
    Description

    This dataset consists of raster geotiff outputs of annual map projections of land use and land cover for the California Central Valley for the period 2011-2101 across 5 future scenarios. Four of the scenarios were developed as part of the Central Valley Landscape Conservation Project. The 4 original scenarios include a Bad-Business-As-Usual (BBAU; high water availability, poor management), California Dreamin’ (DREAM; high water availability, good management), Central Valley Dustbowl (DUST; low water availability, poor management), and Everyone Equally Miserable (EEM; low water availability, good management). These scenarios represent alternative plausible futures, capturing a range of climate variability, land management activities, and habitat restoration goals. We parameterized our models based on close interpretation of these four scenario narratives to best reflect stakeholder interests, adding a baseline Historical Business-As-Usual scenario (HBAU) for comparison. For these f ...

  3. o

    10m Annual Land Use Land Cover (9-class)

    • registry.opendata.aws
    • collections.sentinel-hub.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Impact Observatory (2023). 10m Annual Land Use Land Cover (9-class) [Dataset]. https://registry.opendata.aws/io-lulc/
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    <a href="https://www.impactobservatory.com/">Impact Observatory</a>
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset, produced by Impact Observatory, Microsoft, and Esri, displays a global map of land use and land cover (LULC) derived from ESA Sentinel-2 imagery at 10 meter resolution for the years 2017 - 2023. Each map is a composite of LULC predictions for 9 classes throughout the year in order to generate a representative snapshot of each year. This dataset was generated by Impact Observatory, which used billions of human-labeled pixels (curated by the National Geographic Society) to train a deep learning model for land classification. Each global map was produced by applying this model to the Sentinel-2 annual scene collections from the Mircosoft Planetary Computer. Each of the maps has an assessed average accuracy of over 75%. These maps have been improved from Impact Observatory’s previous release and provide a relative reduction in the amount of anomalous change between classes, particularly between “Bare” and any of the vegetative classes “Trees,” “Crops,” “Flooded Vegetation,” and “Rangeland”. This updated time series of annual global maps is also re-aligned to match the ESA UTM tiling grid for Sentinel-2 imagery. Data can be accessed directly from the Registry of Open Data on AWS, from the STAC 1.0.0 endpoint, or from the IO Store for a specific Area of Interest (AOI).

  4. U

    Chesapeake Bay Land Use and Land Cover (LULC) Database 2022 Edition

    • data.usgs.gov
    • s.cnmilf.com
    • +2more
    Updated Feb 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chesapeake Bay Program (2023). Chesapeake Bay Land Use and Land Cover (LULC) Database 2022 Edition [Dataset]. http://doi.org/10.5066/P981GV1L
    Explore at:
    Dataset updated
    Feb 28, 2023
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Chesapeake Bay Program
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2013 - 2018
    Area covered
    Chesapeake Bay
    Description

    The Chesapeake Bay Land Use and Land Cover Database (LULC) facilitates characterization of the landscape and land change for and between discrete time periods. The database was developed by the University of Vermont’s Spatial Analysis Laboratory in cooperation with Chesapeake Conservancy (CC) and U.S. Geological Survey (USGS) as part of a 6-year Cooperative Agreement between Chesapeake Conservancy and the U.S. Environmental Protection Agency (EPA) and a separate Interagency Agreement between the USGS and EPA to provide geospatial support to the Chesapeake Bay Program Office. The database contains one-meter 13-class Land Cover (LC) and 54-class Land Use/Land Cover (LULC) for all counties within or adjacent to the Chesapeake Bay watershed for 2013/14 and 2017/18, depending on availability of National Agricultural Imagery Program (NAIP) imagery for each state. Additionally, 54 LULC classes are generalized into 18 LULC classes for ease of visualization and communication of LULC trends ...

  5. Historical Land-Cover Change and Land-Use Conversions Global Dataset

    • catalog.data.gov
    • data.cnra.ca.gov
    • +4more
    Updated Sep 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA National Centers for Environmental Information (Point of Contact); UI-UC/ATMO > Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign (Point of Contact) (2023). Historical Land-Cover Change and Land-Use Conversions Global Dataset [Dataset]. https://catalog.data.gov/dataset/historical-land-cover-change-and-land-use-conversions-global-dataset2
    Explore at:
    Dataset updated
    Sep 19, 2023
    Dataset provided by
    National Centers for Environmental Informationhttps://www.ncei.noaa.gov/
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Description

    A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The longest of the three estimates spans 1770-2010. The dataset presented here takes into account land-cover change due to four major land-use/management activities: (1) cropland expansion and abandonment, (2) pastureland expansion and abandonment, (3) urbanization, and (4) secondary forest regrowth due to wood harvest. Due to uncertainties associated with estimating historical agricultural (crops and pastures) land use, the study uses three widely accepted global reconstruction of cropland and pastureland in combination with common wood harvest and urban land data set to provide three distinct estimates of historical land-cover change and underlying land-use conversions. Hence, these distinct historical reconstructions offer a wide range of plausible regional estimates of uncertainty and extent to which different ecosystem have undergone changes. The three estimates use a consistent methodology, and start with a common land-cover map during pre-industrial conditions (year 1765), taking different courses as determined by the land-use/management datasets (cropland, pastureland, urbanization and wood harvest) to attain forest area distributions close to satellite estimates of forests for contemporary period. The satellite based estimates of forest area are based on MODIS sensor. All data uses the WGS84 spatial coordinate system for mapping.

  6. a

    Land Use and Land Cover (2020)

    • hub.arcgis.com
    • rigis.org
    Updated Apr 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental Data Center (2021). Land Use and Land Cover (2020) [Dataset]. https://hub.arcgis.com/datasets/edc::land-use-and-land-cover-2020/explore?location=41.662966%2C-71.470686%2C13.65
    Explore at:
    Dataset updated
    Apr 1, 2021
    Dataset authored and provided by
    Environmental Data Center
    Area covered
    Description

    This hosted feature layer has been published in RI State Plane Feet NAD 83.A statewide, seamless, vector-formatted geospatial dataset depicting 2020 land use and land cover ground conditions. The product was developed by comparing high resolution 2020 and 2011 leaf-off aerial orthoimagery and employing both automated and manual processes to detect, delineate and photointerpret changes since 2011. The project area encompasses the State of Rhode Island and also extends 1/2 mile into the neighboring states of Connecticut and Massachusetts, or to the limits of the source orthoimagery. The minimum mapping unit for this dataset is 0.5 acre.The classification scheme is based on the same RI-modified Anderson Level III scheme used in previous classifications (1988, 1995, 2003/2004, and 2011) with the addition of two new classes (148) Ground-mounted Solar Energy Systems and (149) Wind Energy Systems. If data are used for change detection using the 2003/2004 edition be aware that marinas were coded from other transportation and developed recreation to commercial in the 2020 data to more accurately fit the classification system. The RI classification is based upon Anderson Level III coding described in the United States Geological Survey Publication: "A Land Use And Land Cover Classification System for Use With Remote Sensor Data, Geological Survey Professional Paper 964" Available Online at: https://landcover.usgs.gov/pdf/anderson.pdfPlease consider the source, spatial accuracy, attribute accuracy, and scale of these data before incorporating them into your project. These data were derived from both automated and manual photointerpretation processes and should be used for planning purposes only. The wetland areas contained in this dataset do not include all wetlands previously identified in other RIGIS land use and land cover datasets or in other separate GIS wetland datasets and interpretation of wetland areas should lean toward the side of caution. Wetland areas previously classified as forested wetlands are shown as forested areas in this dataset. Statistical comparisons with RIGIS land use and land cover data prior to 2003 should be treated with caution since some differences in the methodologies used to delineate features were employed

  7. Land Cover 2050 - Global

    • climat.esri.ca
    • uneca.africageoportal.com
    • +13more
    Updated Jul 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). Land Cover 2050 - Global [Dataset]. https://climat.esri.ca/datasets/esri::land-cover-2050-global
    Explore at:
    Dataset updated
    Jul 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Pacific Ocean, Bering Sea, Proliv Longa, Proliv Longa, North Pacific Ocean, Arctic Ocean, South Pacific Ocean
    Description

    Use this global model layer when performing analysis across continents. This layer displays a global land cover map and model for the year 2050 at a pixel resolution of 300m. ESA CCI land cover from the years 2010 and 2018 were used to create this prediction.Variable mapped: Projected land cover in 2050.Data Projection: Cylindrical Equal AreaMosaic Projection: Cylindrical Equal AreaExtent: Global Cell Size: 300mSource Type: ThematicVisible Scale: 1:50,000 and smallerSource: Clark UniversityPublication date: April 2021What you can do with this layer?This layer may be added to online maps and compared with the ESA CCI Land Cover from any year from 1992 to 2018. To do this, add Global Land Cover 1992-2018 to your map and choose the processing template (image display) from that layer called “Simplified Renderer.” This layer can also be used in analysis in ecological planning to find specific areas that may need to be set aside before they are converted to human use.Links to the six Clark University land cover 2050 layers in ArcGIS Living Atlas of the World:There are three scales (country, regional, and world) for the land cover and vulnerability models. They’re all slightly different since the country model can be more fine-tuned to the drivers in that particular area. Regional (continental) and global have more spatially consistent model weights. Which should you use? If you’re analyzing one country or want to make accurate comparisons between countries, use the country level. If mapping larger patterns, use the global or regional extent (depending on your area of interest). Land Cover 2050 - GlobalLand Cover 2050 - RegionalLand Cover 2050 - CountryLand Cover Vulnerability to Change 2050 GlobalLand Cover Vulnerability to Change 2050 RegionalLand Cover Vulnerability to Change 2050 CountryWhat these layers model (and what they don’t model)The model focuses on human-based land cover changes and projects the extent of these changes to the year 2050. It seeks to find where agricultural and urban land cover will cover the planet in that year, and what areas are most vulnerable to change due to the expansion of the human footprint. It does not predict changes to other land cover types such as forests or other natural vegetation during that time period unless it is replaced by agriculture or urban land cover. It also doesn’t predict sea level rise unless the model detected a pattern in changes in bodies of water between 2010 and 2018. A few 300m pixels might have changed due to sea level rise during that timeframe, but not many.The model predicts land cover changes based upon patterns it found in the period 2010-2018. But it cannot predict future land use. This is partly because current land use is not necessarily a model input. In this model, land set aside as a result of political decisions, for example military bases or nature reserves, may be found to be filled in with urban or agricultural areas in 2050. This is because the model is blind to the political decisions that affect land use.Quantitative Variables used to create ModelsBiomassCrop SuitabilityDistance to AirportsDistance to Cropland 2010Distance to Primary RoadsDistance to RailroadsDistance to Secondary RoadsDistance to Settled AreasDistance to Urban 2010ElevationGDPHuman Influence IndexPopulation DensityPrecipitationRegions SlopeTemperatureQualitative Variables used to create ModelsBiomesEcoregionsIrrigated CropsProtected AreasProvincesRainfed CropsSoil ClassificationSoil DepthSoil DrainageSoil pHSoil TextureWere small countries modeled?Clark University modeled some small countries that had a few transitions. Only five countries were modeled with this procedure: Bhutan, North Macedonia, Palau, Singapore and Vanuatu.As a rule of thumb, the MLP neural network in the Land Change Modeler requires at least 100 pixels of change for model calibration. Several countries experienced less than 100 pixels of change between 2010 & 2018 and therefore required an alternate modeling methodology. These countries are Bhutan, North Macedonia, Palau, Singapore and Vanuatu. To overcome the lack of samples, these select countries were resampled from 300 meters to 150 meters, effectively multiplying the number of pixels by four. As a result, we were able to empirically model countries which originally had as few as 25 pixels of change.Once a selected country was resampled to 150 meter resolution, three transition potential images were calibrated and averaged to produce one final transition potential image per transition. Clark Labs chose to create averaged transition potential images to limit artifacts of model overfitting. Though each model contained at least 100 samples of "change", this is still relatively little for a neural network-based model and could lead to anomalous outcomes. The averaged transition potentials were used to extrapolate change and produce a final hard prediction and risk map of natural land cover conversion to Cropland and Artificial Surfaces in 2050.39 Small Countries Not ModeledThere were 39 countries that were not modeled because the transitions, if any, from natural to anthropogenic were very small. In this case the land cover for 2050 for these countries are the same as the 2018 maps and their vulnerability was given a value of 0. Here were the countries not modeled:AndorraAntigua and BarbudaBarbadosCape VerdeComorosCook IslandsDjiboutiDominicaFaroe IslandsFrench GuyanaFrench PolynesiaGibraltarGrenadaGuamGuyanaIcelandJan MayenKiribatiLiechtensteinLuxembourgMaldivesMaltaMarshall IslandsMicronesia, Federated States ofMoldovaMonacoNauruSaint Kitts and NevisSaint LuciaSaint Vincent and the GrenadinesSamoaSan MarinoSeychellesSurinameSvalbardThe BahamasTongaTuvaluVatican CityIndex to land cover values in this dataset:The Clark University Land Cover 2050 projections display a ten-class land cover generalized from ESA Climate Change Initiative Land Cover. 1 Mostly Cropland2 Grassland, Scrub, or Shrub3 Mostly Deciduous Forest4 Mostly Needleleaf/Evergreen Forest5 Sparse Vegetation6 Bare Area7 Swampy or Often Flooded Vegetation8 Artificial Surface or Urban Area9 Surface Water10 Permanent Snow and Ice

  8. a

    Florida Cooperative Land Cover (Raster)

    • mapdirect-fdep.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jan 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Fish and Wildlife Conservation Commission (2022). Florida Cooperative Land Cover (Raster) [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/documents/9b791b9269f14caea04d995f8fbe6a14
    Explore at:
    Dataset updated
    Jan 1, 2022
    Dataset authored and provided by
    Florida Fish and Wildlife Conservation Commission
    Area covered
    Description

    The Cooperative Land Cover Map is a project to develop an improved statewide land cover map from existing sources and expert review of aerial photography. The project is directly tied to a goal of Florida's State Wildlife Action Plan (SWAP) to represent Florida's diverse habitats in a spatially-explicit manner. The Cooperative Land Cover Map integrates 3 primary data types: 1) 6 million acres are derived from local or site-specific data sources, primarily on existing conservation lands. Most of these sources have a ground-truth or local knowledge component. We collected land cover and vegetation data from 37 existing sources. Each dataset was evaluated for consistency and quality and assigned a confidence category that determined how it was integrated into the final land cover map. 2) 1.4 million acres are derived from areas that FNAI ecologists reviewed with high resolution aerial photography. These areas were reviewed because other data indicated some potential for the presence of a focal community: scrub, scrubby flatwoods, sandhill, dry prairie, pine rockland, rockland hammock, upland pine or mesic flatwoods. 3) 3.2 million acres are represented by Florida Land Use Land Cover data from the FL Department of Environmental Protection and Water Management Districts (FLUCCS). The Cooperative Land Cover Map integrates data from the following years: NWFWMD: 2006 - 07 SRWMD: 2005 - 08 SJRWMD: 2004 SFWMD: 2004 SWFWMD: 2008 All data were crosswalked into the Florida Land Cover Classification System. This project was funded by a grant from FWC/Florida's Wildlife Legacy Initiative (Project 08009) to Florida Natural Areas Inventory. The current dataset is provided in 10m raster grid format.Changes from Version 1.1 to Version 2.3:CLC v2.3 includes updated Florida Land Use Land Cover for four water management districts as described above: NWFWMD, SJRWMD, SFWMD, SWFWMDCLC v2.3 incorporates major revisions to natural coastal land cover and natural communities potentially affected by sea level rise. These revisions were undertaken by FNAI as part of two projects: Re-evaluating Florida's Ecological Conservation Priorities in the Face of Sea Level Rise (funded by the Yale Mapping Framework for Biodiversity Conservation and Climate Adaptation) and Predicting and Mitigating the Effects of Sea-Level Rise and Land Use Changes on Imperiled Species and Natural communities in Florida (funded by an FWC State Wildlife Grant and The Kresge Foundation). FNAI also opportunistically revised natural communities as needed in the course of species habitat mapping work funded by the Florida Department of Environmental Protection. CLC v2.3 also includes several new site specific data sources: New or revised FNAI natural community maps for 13 conservation lands and 9 Florida Forever proposals; new Florida Park Service maps for 10 parks; Sarasota County Preserves Habitat Maps (with FNAI review); Sarasota County HCP Florida Scrub-Jay Habitat (with FNAI Review); Southwest Florida Scrub Working Group scrub polygons. Several corrections to the crosswalk of FLUCCS to FLCS were made, including review and reclassification of interior sand beaches that were originally crosswalked to beach dune, and reclassification of upland hardwood forest south of Lake Okeechobee to mesic hammock. Representation of state waters was expanded to include the NOAA Submerged Lands Act data for Florida.Changes from Version 2.3 to 3.0: All land classes underwent revisions to correct boundaries, mislabeled classes, and hard edges between classes. Vector data was compared against high resolution Digital Ortho Quarter Quads (DOQQ) and Google Earth imagery. Individual land cover classes were converted to .KML format for use in Google Earth. Errors identified through visual review were manually corrected. Statewide medium resolution (spatial resolution of 10 m) SPOT 5 images were available for remote sensing classification with the following spectral bands: near infrared, red, green and short wave infrared. The acquisition dates of SPOT images ranged between October, 2005 and October, 2010. Remote sensing classification was performed in Idrisi Taiga and ERDAS Imagine. Supervised and unsupervised classifications of each SPOT image were performed with the corrected polygon data as a guide. Further visual inspections of classified areas were conducted for consistency, errors, and edge matching between image footprints. CLC v3.0 now includes state wide Florida NAVTEQ transportation data. CLC v3.0 incorporates extensive revisions to scrub, scrubby flatwoods, mesic flatwoods, and upland pine classes. An additional class, scrub mangrove – 5252, was added to the crosswalk. Mangrove swamp was reviewed and reclassified to include areas of scrub mangrove. CLC v3.0 also includes additional revisions to sand beach, riverine sand bar, and beach dune previously misclassified as high intensity urban or extractive. CLC v3.0 excludes the Dry Tortugas and does not include some of the small keys between Key West and Marquesas.Changes from Version 3.0 to Version 3.1: CLC v3.1 includes several new site specific data sources: Revised FNAI natural community maps for 31 WMAs, and 6 Florida Forever areas or proposals. This data was either extracted from v2.3, or from more recent mapping efforts. Domains have been removed from the attribute table, and a class name field has been added for SITE and STATE level classes. The Dry Tortugas have been reincorporated. The geographic extent has been revised for the Coastal Upland and Dry Prairie classes. Rural Open and the Extractive classes underwent a more thorough reviewChanges from Version 3.1 to Version 3.2:CLC v3.2 includes several new site specific data sources: Revised FNAI natural community maps for 43 Florida Park Service lands, and 9 Florida Forever areas or proposals. This data is from 2014 - 2016 mapping efforts. SITE level class review: Wet Coniferous plantation (2450) from v2.3 has been included in v3.2. Non-Vegetated Wetland (2300), Urban Open Land (18211), Cropland/Pasture (18331), and High Pine and Scrub (1200) have undergone thorough review and reclassification where appropriate. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.2.5 to Version 3.3: The CLC v3.3 includes several new site specific data sources: Revised FNAI natural community maps for 14 FWC managed or co-managed lands, including 7 WMA and 7 WEA, 1 State Forest, 3 Hillsboro County managed areas, and 1 Florida Forever proposal. This data is from the 2017 – 2018 mapping efforts. Select sites and classes were included from the 2016 – 2017 NWFWMD (FLUCCS) dataset. M.C. Davis Conservation areas, 18331x agricultural classes underwent a thorough review and reclassification where appropriate. Prairie Mesic Hammock (1122) was reclassified to Prairie Hydric Hammock (22322) in the Everglades. All SITE level Tree Plantations (18333) were reclassified to Coniferous Plantations (183332). The addition of FWC Oyster Bar (5230) features. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com, including classification corrections to sites in T.M. Goodwin and Ocala National Forest. CLC v3.3 utilizes the updated The Florida Land Cover Classification System (2018), altering the following class names and numbers: Irrigated Row Crops (1833111), Wet Coniferous Plantations (1833321) (formerly 2450), Major Springs (4131) (formerly 3118). Mixed Hardwood-Coniferous Swamps (2240) (formerly Other Wetland Forested Mixed).Changes from Version 3.4 to Version 3.5: The CLC v3.5 includes several new site specific data sources: Revised FNAI natural community maps for 16 managed areas, and 10 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2019 – 2020 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. This version of the CLC is also the first to include land identified as Salt Flats (5241).Changes from Version 3.5 to 3.6: The CLC v3.6 includes several new site specific data sources: Revised FNAI natural community maps for 11 managed areas, and 24 Florida Forever Board of Trustees Projects (FFBOT) sites. This data is from the 2018 – 2022 mapping efforts. Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com.Changes from Version 3.6 to 3.7: The CLC 3.7 includes several new site specific data sources: Revised FNAI natural community maps for 5 managed areas (2022-2023). Revised Palm Beach County Natural Areas data for Pine Glades Natural Area (2023). Other classification errors were opportunistically corrected as found or as reported by users to landcovermap@myfwc.com. In this version a few SITE level classifications are reclassified for the STATE level classification system. Mesic Flatwoods and Scrubby Flatwoods are classified as Dry Flatwoods at the STATE level. Upland Glade is classified as Barren, Sinkhole, and Outcrop Communities at the STATE level. Lastly Upland Pine is classified as High Pine and Scrub at the STATE level.

  9. d

    Annual National Land Cover Database (NLCD) Collection 1 Land Cover

    • catalog.data.gov
    Updated Oct 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Annual National Land Cover Database (NLCD) Collection 1 Land Cover [Dataset]. https://catalog.data.gov/dataset/annual-national-land-cover-database-nlcd-collection-1-land-cover
    Explore at:
    Dataset updated
    Oct 27, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The USGS Land Cover program has combined the tried-and-true methodologies from premier land cover projects, National Land Cover Database (NLCD) and Land Change Monitoring, Assessment, and Projection (LCMAP), together with modern innovations in geospatial deep learning technologies to create the next generation of land cover and land change information. The product suite is called, “Annual NLCD” and includes six annual products that represent land cover and surface change characteristics of the U.S.: 1) Land Cover, 2) Land Cover Change, 3) Land Cover Confidence, 4) Fractional Impervious Surface, 5) Impervious Descriptor, and 6) Spectral Change Day of Year. These land cover science product algorithms harness the remotely sensed Landsat data record to provide state-of-the-art land surface change information needed by scientists, resource managers, and decision-makers. Annual NLCD uses a modernized, integrated approach to map, monitor, synthesize, and understand the complexities of land use, cover, and condition change. With this first release, Annual NLCD, Collection 1.0, the six products are available for the Conterminous U.S. for 1985 – 2023. Questions about the Annual NLCD product suite can be directed to the Annual NLCD mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or custserv@usgs.gov. See included spatial metadata for more details.

  10. U

    Modeled Land Use and Land Cover, 1980-2100

    • data.usgs.gov
    • catalog.data.gov
    Updated Nov 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Taylor Woods; Sean Emmons; Benjamin Gressler; Michael Wieczorek (2024). Modeled Land Use and Land Cover, 1980-2100 [Dataset]. http://doi.org/10.5066/P14MSPDS
    Explore at:
    Dataset updated
    Nov 14, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Taylor Woods; Sean Emmons; Benjamin Gressler; Michael Wieczorek
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    1980 - 2100
    Description

    This tabular data set contains information on historic and projected land-use/land-cover, compiled for two spatial components of the NHDPlus version 2.1 data suite (NHDPlusv2) for select regions of the conterminous United States; 1) individual reach catchments and 2) reach catchments accumulated upstream through the river network. This dataset can be linked to the NHDPlus version 2.1 data suite by the unique identifier COMID. The source data is from the Modeled historic and projected land use and land cover for the conterminous United States produced by Terry Sohl and others (2014, 2018). The data provided here contains information for the years, 1980 through 2100, compiled as described above. The units are in percentages. Reach catchment information characterizes data at the local scale. Reach catchments accumulated upstream through the river network characterizes cumulative upstream conditions. Network-accumulated values were computed using the xstrm python software package (Wie ...

  11. Land Use/Land Cover of New Jersey 2012 Generalized (Download)

    • hub.arcgis.com
    • gisdata-njdep.opendata.arcgis.com
    • +1more
    Updated Feb 17, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJDEP Bureau of GIS (2015). Land Use/Land Cover of New Jersey 2012 Generalized (Download) [Dataset]. https://hub.arcgis.com/documents/d7b358c0ea384cdab8040bc25a9bf59c
    Explore at:
    Dataset updated
    Feb 17, 2015
    Dataset provided by
    New Jersey Department of Environmental Protectionhttp://www.nj.gov/dep/
    Authors
    NJDEP Bureau of GIS
    Area covered
    New Jersey
    Description

    Please note that this file is large, ~550 MB, and may take a substantial amount of time to download especially on slower internet connections.Shapefile (NJ State Plane NAD 1983) download: Click "Open" or Click hereFile Geodatabase (NJ State Plane NAD 1983) download: Click hereThis data represents a "generalized" version of the 2012 LULC. To improve the performance of the web applications displaying the 2012 land use data, it was necessary to create a new simplified layer that included only the minimum number of polygons and attributes needed to represent the 2012 land use conditions. The 2012 LU/LC data set is the fifth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007 and 2012. This present 2012 update was created by comparing the 2007 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2012 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2012 land use directly to the base data layer. All 2007 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2007-2012 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2007. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2012 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.

  12. NLCD 2019 Land Cover California Subset

    • data.ca.gov
    Updated Sep 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NLCD 2019 Land Cover California Subset [Dataset]. https://data.ca.gov/dataset/nlcd-2019-land-cover-california-subset
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Sep 28, 2023
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    The U.S. Geological Survey (USGS), in partnership with several federal agencies, has developed and released five National Land Cover Database (NLCD) products over the past two decades: NLCD 1992, 2001, 2006, 2011, and 2016. The 2016 release saw landcover created for additional years of 2003, 2008, and 2013. These products provide spatially explicit and reliable information on the Nation’s land cover and land cover change. To continue the legacy of NLCD and further establish a long-term monitoring capability for the Nation’s land resources, the USGS has designed a new generation of NLCD products named NLCD 2019. The NLCD 2019 design aims to provide innovative, consistent, and robust methodologies for production of a multi-temporal land cover and land cover change database from 2001 to 2019 at 2–3-year intervals. Comprehensive research was conducted and resulted in developed strategies for NLCD 2019: continued integration between impervious surface and all landcover products with impervious surface being directly mapped as developed classes in the landcover, a streamlined compositing process for assembling and preprocessing based on Landsat imagery and geospatial ancillary datasets; a multi-source integrated training data development and decision-tree based land cover classifications; a temporally, spectrally, and spatially integrated land cover change analysis strategy; a hierarchical theme-based post-classification and integration protocol for generating land cover and change products; a continuous fields biophysical parameters modeling method; and an automated scripted operational system for the NLCD 2019 production. The performance of the developed strategies and methods were tested in twenty composite referenced areas throughout the conterminous U.S. An overall accuracy assessment from the 2016 publication give a 91% overall landcover accuracy, with the developed classes also showing a 91% accuracy in overall developed. Results from this study confirm the robustness of this comprehensive and highly automated procedure for NLCD 2019 operational mapping. Questions about the NLCD 2019 land cover product can be directed to the NLCD 2019 land cover mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included spatial metadata for more details.

  13. a

    Africa Land Cover

    • africageoportal.com
    • rwanda.africageoportal.com
    • +2more
    Updated Dec 7, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2017). Africa Land Cover [Dataset]. https://www.africageoportal.com/maps/b4a808eba17d4294991880d9e120faee
    Explore at:
    Dataset updated
    Dec 7, 2017
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.

  14. Land Use/Land Cover of New Jersey 2015 (Download)

    • hub.arcgis.com
    • opendata.rcmrd.org
    • +3more
    Updated Dec 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJDEP Bureau of GIS (2020). Land Use/Land Cover of New Jersey 2015 (Download) [Dataset]. https://hub.arcgis.com/documents/6f76b90deda34cc98aec255e2defdb45
    Explore at:
    Dataset updated
    Dec 25, 2020
    Dataset provided by
    New Jersey Department of Environmental Protectionhttp://www.nj.gov/dep/
    Authors
    NJDEP Bureau of GIS
    Area covered
    New Jersey
    Description

    The 2015 LU/LC data set is the sixth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007, 2012 and 2015. This present 2015 update was created by comparing the 2012 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2015 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2015 land use directly to the base data layer. All 2012 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2012-2015 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2015. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2015 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.

  15. a

    United States of America National Land Cover Database (NLCD) Land Cover,...

    • supply-chain-data-hub-nmcdc.hub.arcgis.com
    Updated Jul 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New Mexico Community Data Collaborative (2022). United States of America National Land Cover Database (NLCD) Land Cover, 2001-2019 [Dataset]. https://supply-chain-data-hub-nmcdc.hub.arcgis.com/datasets/united-states-of-america-national-land-cover-database-nlcd-land-cover-2001-2019-1
    Explore at:
    Dataset updated
    Jul 25, 2022
    Dataset authored and provided by
    New Mexico Community Data Collaborative
    Area covered
    United States
    Description

    Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.This layer displays land cover for the years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into web mercator, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief.MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover.51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate is periodically saturated with or covered with water.95. Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation accounts for greater than 80% of vegetative cover and the soil or substrate is

  16. d

    Capo Verde, Land Use Land Cover 2000

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Capo Verde, Land Use Land Cover 2000 [Dataset]. https://catalog.data.gov/dataset/capo-verde-land-use-land-cover-2000
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Cabo Verde
    Description

    This dataset is the first (circa 2000) of two 500-meter land use land cover (LULC) time-periods datasets (2000, and 2013) aids in monitoring change in West Africa’s land resources. To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.

  17. Sentinel-2 10-Meter Land Use/Land Cover Time Series

    • uneca.africageoportal.com
    • morocco.africageoportal.com
    • +7more
    Updated Feb 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10-Meter Land Use/Land Cover Time Series [Dataset]. https://uneca.africageoportal.com/maps/739b8a9dcf4246d3af7197878b7ec052
    Explore at:
    Dataset updated
    Feb 22, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This web map displays the land use/land cover (LULC) timeseries layer derived from ESA Sentinel-2 imagery at 10m resolution. The visualization uses blend modes and is best used in the new Map Viewer. The time slider can be used to advance through the five years of data from 2017-2021. There are also a series of bookmarks for the locations below:Urban growth examplesOuagadougouCairo/GizaDubai, UAEKaty, Texas, USALoudoun County, VirginiaInfrastructureIstanbul International Airport, TurkeyGrand Ethiopian Renaissance Dam, EthiopiaDeforestationBorder of Acre and Rondonia states, BrazilHarz Mountains, GermanyWetlands lossPantanal, BrazilParana river, ArgentinaVegetation changing after fireNorthern California: Paradise, Redding, Clear Lake, Santa Rosa, Mendocino National ForestKangaroo Island, AustraliaVictoria and NSW, AustraliaYakutia, RussiaHurricane ImpactAbaco Island, BahamasRecent Lava FlowHawaii IslandSurface MiningBrown Coal, Cottbus, GermanyLand ReclamationMarkermeer, NetherlandsEconomic DevelopmentNorth vs South Korea

  18. Land Use/Land Cover of New Jersey 2002 (Download)

    • gisdata-njdep.opendata.arcgis.com
    • njogis-newjersey.opendata.arcgis.com
    • +2more
    Updated Jan 1, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJDEP Bureau of GIS (2007). Land Use/Land Cover of New Jersey 2002 (Download) [Dataset]. https://gisdata-njdep.opendata.arcgis.com/documents/4f70566eab604aacb3ecae4bbf15beaf
    Explore at:
    Dataset updated
    Jan 1, 2007
    Dataset provided by
    New Jersey Department of Environmental Protectionhttp://www.nj.gov/dep/
    Authors
    NJDEP Bureau of GIS
    Area covered
    New Jersey
    Description

    The data was created by comparing the 1995/97 land use/land cover (LU/LC) layer from NJ DEP's geographical information systems (GIS) database to 2002 color infrared (CIR) imagery and delineating areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2002 land use directly to the base data layer. All 1986 LU/LC polygons and attribute fields were removed from this update, however, all 1995/97 LU/LC polygons remain in this data set, so change analysis can be undertaken from this one layer. The classification system used was a modified Anderson et al., 2002 classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2002 and 1995/97. Minimum mapping unit (MMU) is 1 acre.

  19. w

    U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +3more
    esri rest
    Updated Jun 8, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). U.S. Geological Survey Gap Analysis Program- Land Cover Data v2.2 [Dataset]. https://data.wu.ac.at/schema/data_gov/MmMzYjljMzQtZmJjMy00NjUwLWE3YmMtNzRlOWRmMTFkZTVj
    Explore at:
    esri restAvailable download formats
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    d8998031d4cf34652dda2763c83c7b599a8a3521
    Description

    This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer

  20. Sri Lanka - Land Use Land Cover LULC (Change) Mapping

    • datacatalog.worldbank.org
    • data.subak.org
    jpg, pdf, vector api +1
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group (WBG), European Space Agency (ESA), and the following contracted vendor(s): Nazka mapps (Belgium) and Remote Sensing Solutions (Germany) for ESA and World Bank, Sri Lanka - Land Use Land Cover LULC (Change) Mapping [Dataset]. https://datacatalog.worldbank.org/dataset/sri-lanka-land-use-land-cover-lulc-change-mapping
    Explore at:
    zip, vector api, pdf, jpgAvailable download formats
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Nazka Mapps
    World Bankhttp://worldbank.org/
    License

    https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc

    Area covered
    Sri Lanka
    Description

    Land cover/land use (LULC) maps for the catchments of Kelani Ganga and Attanagalu Oya, and LULC Change comparing 1991, 2001 with the recent LCLU (2012). Classification includes two thematic levels (national 7-class scheme and 15 land cover/land use classes according to user definitions).

    This dataset is one of the products produced under the 2014-2016 World Bank (WBG) - European Space Agency (ESA) partnership, and is published in the partnership report: Earth Observation for Sustainable Development, June 2016.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Geospatial Analysis Lab (GsAL) at USF (2024). Sentinel-2 10m Land Use Land Cover Time Series [Dataset]. https://wfp-demographic-analysis-usfca.hub.arcgis.com/content/42945cf091f84444ab43c9850959edc3

Sentinel-2 10m Land Use Land Cover Time Series

Explore at:
Dataset updated
Oct 2, 2024
Dataset authored and provided by
Geospatial Analysis Lab (GsAL) at USF
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Description

This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.

Search
Clear search
Close search
Google apps
Main menu