12 datasets found
  1. a

    LandsatLook Viewer

    • hub.arcgis.com
    • amerigeo.org
    • +7more
    Updated Nov 9, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2018). LandsatLook Viewer [Dataset]. https://hub.arcgis.com/items/amerigeoss::landsatlook-viewer
    Explore at:
    Dataset updated
    Nov 9, 2018
    Dataset authored and provided by
    AmeriGEOSS
    Description

    Welcome to the LandsatLook Viewer!The LandsatLook Viewer is a prototype tool that was developed to allow rapid online viewing and access to the USGS Landsat image archives. This viewer allows you to:Interactively explore the Landsat archive at up to full resolution directly from a common web browserSearch for specific Landsat images based on area of interest, acquisition date, or cloud coverCompare image features and view changes through timeDisplay configurable map information layers in combination with the Landsat imageryCreate a customized image display and export as a simple graphic fileView metadata and download the full-band source imagerySearch by address or place, or zoom to a point, bounding box, or Sentinel-2 Tile or Landsat WRS-1 or WRS-2 Path/RowGenerate and download a video animation of the oldest to newest images displayed in the viewerWe welcome feedback and input for future versions of this Viewer! Please provide your comments or suggestions .About the ImageryThis viewer provides visual and download access to the USGS LandsatLook "Natural Color" imageproduct archive.BackgroundThe Landsat satellites have been collecting multispectral images of Earth from space since 1972. Each image contains multiple bands of spectral information which may require significant user time, system resources, and technical expertise to obtain a visual result. As a result, the use and access to Landsat data has been historically limited to the scientific and technical user communities.The LandsatLook “Natural Color” image product option was created to provide Landsat imagery in a simple user-friendly and viewer-ready format, based on specific bands that have been selected and arranged to simulate natural color. This type of product allows easy visualization of the archived Landsat image without any need for specialized software or technical expertise.LandsatLook ViewerThe LandsatLook Viewer displays the LandsatLook Natural Color image product for all Landsat 1-8 images in the USGS archive and was designed primarily for visualization purposes.The imagery within this Viewer will be of value to anyone who wants to quickly see the full Landsat record for an area, along with major image features or obvious changes to Earth’s surface through time. An area of interest may be extracted and downloaded as a simple graphic file directly through the viewer, and the original full image tile is also available if needed. Any downloaded LandsatLook image product is a georeferenced file and will be compatible within most GIS and Web mapping applications.If the user needs to perform detailed technical analysis, the full bands of Landsat source data may also be accessed through direct links provided on the LandsatLook Viewer.Image ServicesThe imagery that is visible on this LandsatLook Viewer is based on Web-based ArcGIS image services. The underlying REST service endpoints for the LandsatLook imagery are available at https://landsatlook.usgs.gov/arcgis/rest/services/LandsatLook/ImageServer .Useful linksLandsat- Landsat Mission (USGS)- Landsat Science (NASA)LandsatLook- Product Description- USGS Fact Sheet- LandsatLook image services (REST)Landsat Products- Landsat 8 OLI/TIRS- Landsat 7 ETM+- Landsat 4-5 TM- Landsat 1-5 MSS- Landsat Band DesignationsLandsatLook images are full-resolution files derived from Landsat Level-1 data products. The images are compressed and stretched to create an image optimized for image selection and visual interpretation. It is recommended that these images not be used in image analysis.LandsatLook image files are included as options when downloading Landsat scenes from EarthExplorer, GloVis, or the LandsatLook Viewer (See Figure 1).Figure 1. LandsatLook and Level-1 product download optionsLandsatLook Natural Color ImageThe LandsatLook Natural Color image is a .jpg composite of three bands to show a “natural” looking (false color) image. Reflectance values were calculated from the calibrated scaled digital number (DN) image data. The reflectance values were scaled to a 1-255 range using a gamma stretch with a gamma=2.0. This stretch was designed to emphasize vegetation without clipping the extreme values.Landsat 8 OLI = Bands 6,5,4Landsat 7 ETM+ and Landsat 4-5 TM = Bands 5,4,3Landsat 4-5 MSS = Bands 2,4,1Landsat 1-3 MSS = Bands 7,5,4LandsatLook Thermal ImageThe LandsatLook Thermal image is a one-band gray scale .jpg image that displays thermal properties of a Landsat scene. Image brightness temperature values were calculated from the calibrated scaled digital number (DN) image data. An image specific 2 percent clip and a linear stretch to 1-255 were applied to the brightness temperature values.Landsat 8 TIRS = Band 10Landsat 7 ETM+ = Band 61-high gainLandsat 4-5 TM = Band 6Landsat 1-5 MSS = not availableLandsatLook Quality ImageLandsatLook Quality images are 8-bit files generated from the Landsat Level-1 Quality band to provide a quick view of the quality of the pixels within the scene to determine if a particular scene would work best for the user's application. This file includes values representing bit-packed combinations of surface, atmosphere, and sensor conditions that can affect the overall usefulness of a given pixel. Color mapping assignments can be seen in the tables below. For each Landsat scene, LandsatLook Quality images can be downloaded individually in .jpg format, or as a GeoTIFF format file (_QB.TIF) within the LandsatLook Images with Geographic Reference file.Landsat Collection 1 LandsatLook 8-bit Quality Images DesignationsLandsat 8 OLI/TIRSLandsat 7 ETM+, Landsat 4-5 TMLandsat 1-5 MSSColorBitDescriptionBitDescriptionBitDescription 0Designated Fill0Designated Fill0Designated Fill 1Terrain Occlusion1Dropped Pixel1Dropped Pixel 2Radiometric Saturation 2Radiometric Saturation ​2Radiometric Saturation 3Cloud3Cloud3Cloud 4Cloud Shadow4Cloud Shadow 4Unused 5Snow/Ice 5Snow/Ice 5Unused 6Cirrus 6Unused6Unused 7Unused7Unused7UnusedUnusedTable 1. Landsat Collection 1 LandsatLook 8-bit Quality Images Designations LandsatLook Images with Geographic ReferenceThe LandsatLook Image with Geographic Reference is a .zip file bundle that contains the Natural Color, Thermal, and the 8-bit Quality images in georeferenced GeoTiff (.TIF) file format.Figure 2. LandsatLook Natural Color Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 3. LandsatLook Thermal Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 4. LandsatLook Quality Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013 with background color set to dark grey. Additional Information About LandsatLook ImagesMany geographic information systems and image processing software packages easily support .jpg images. To create these files, Landsat data is mapped to a 1-255 range, with the fill area set to zero (if a no-data value is set to zero, the compression algorithm may introduce zero-value artifacts into the data area causing very dark data values to be displayed as no-data).

  2. U

    Estimated crop irrigation water use withdrawals in Butler Valley Groundwater...

    • data.usgs.gov
    • catalog.data.gov
    Updated Apr 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Read; Ammon Cadogan; Saeid Tadayon (2022). Estimated crop irrigation water use withdrawals in Butler Valley Groundwater Basin, Arizona for 2020 [Dataset]. http://doi.org/10.5066/P9TQIMS7
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Amy Read; Ammon Cadogan; Saeid Tadayon
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    Butler Valley, Arizona
    Description

    Observations of irrigated agricultural land within the Butler Valley Groundwater Basin in Arizona. Crops were verified in situ twice in 2020 first on March 11th and again on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdra ...

  3. d

    Estimated crop irrigation water use withdrawals in Hualapai Valley...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2020 [Dataset]. https://catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-hualapai-valley-groundwater-basin-arizo-c13a6
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Hualapai Valley, Arizona
    Description

    Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 16th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  4. c

    Estimated crop irrigation water use withdrawals in Hualapai Valley...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2016 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-hualapai-valley-groundwater-basin-arizo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Hualapai Valley
    Description

    Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2016 on August 1st, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2015 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  5. U

    Estimated crop irrigation water use withdrawals in Ranegras Plain...

    • data.usgs.gov
    • catalog.data.gov
    Updated Apr 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Read; Ammon Cadogan; Saeid Tadayon (2022). Estimated crop irrigation water use withdrawals in Ranegras Plain Groundwater Basin, Arizona for 2020 [Dataset]. http://doi.org/10.5066/P9VE8CON
    Explore at:
    Dataset updated
    Apr 20, 2022
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Amy Read; Ammon Cadogan; Saeid Tadayon
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    Ranegras Plain, Arizona
    Description

    Observations of irrigated agricultural land within the Ranegras Plain Groundwater Basin in Arizona. Crops were verified in situ three times in 2020 first on March 11th, then on May 27th, and finally on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation sy ...

  6. c

    Estimated crop irrigation water use withdrawals in Hualapai Valley...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2018 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-hualapai-valley-groundwater-basin-arizo-b4540
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Hualapai Valley
    Description

    Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2018 on July 17th, based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2017 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  7. U

    Estimated crop irrigation water use withdrawals in Sacramento Valley...

    • data.usgs.gov
    • catalog.data.gov
    Updated Dec 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy Read; Ammon Cadogan; Saeid Tadayon (2024). Estimated crop irrigation water use withdrawals in Sacramento Valley Groundwater Basin, Arizona for 2020 [Dataset]. http://doi.org/10.5066/P9KF6CBV
    Explore at:
    Dataset updated
    Dec 27, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Amy Read; Ammon Cadogan; Saeid Tadayon
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 31, 2020
    Area covered
    Arizona
    Description

    Observations of irrigated agricultural land within the Sacramento Valley Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 16th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified fro ...

  8. d

    Estimated crop irrigation water use withdrawals in Harquahala Irrigation...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Harquahala Irrigation Non-Expansion Area Groundwater Basin, Arizona for 2020 [Dataset]. https://catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-harquahala-irrigation-non-expansion-are-9d269
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Harquahala Mountain
    Description

    Observations of irrigated agricultural land within the Harquahala Irrigation Non-Expansion Area Groundwater Basin in Arizona. Crops were verified in situ three times in 2020 on first on March 11th, then on May 27th, and finally on August 11th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  9. d

    Estimated crop irrigation water use withdrawals in Hualapai Valley...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Hualapai Valley Groundwater Basin, Arizona for 2014 [Dataset]. https://catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-hualapai-valley-groundwater-basin-arizo-d6cec
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Hualapai Valley, Arizona
    Description

    Observations of irrigated agricultural land within the Hualapai Valley Groundwater Basin in Arizona. Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandsatLook Viewer (https://landlook.usgs.gov/landlook/) were used to digitize field boundaries, as well as observe crop type, crop growing season, crop condition, and irrigation system characteristics. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  10. d

    Estimated crop irrigation water use withdrawals in Willcox Groundwater...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Willcox Groundwater Basin, Arizona for 2020 [Dataset]. https://catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-willcox-groundwater-basin-arizona-for-2
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Willcox, Arizona
    Description

    Observations of irrigated agricultural land within the Willcox Groundwater Basin in Arizona. Crops were verified in situ twice in 2020, first on May 20th and again on August 12th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  11. c

    Estimated crop irrigation water use withdrawals in Lower San Pedro...

    • s.cnmilf.com
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/estimated-crop-irrigation-water-use-withdrawals-in-lower-san-pedro-groundwater-basin-arizo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    Observations of irrigated agricultural land within the Lower San Pedro Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 14th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  12. g

    Estimated crop irrigation water use withdrawals in Lower San Pedro...

    • gimi9.com
    Updated May 6, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2005). Estimated crop irrigation water use withdrawals in Lower San Pedro Groundwater Basin, Arizona for 2020 | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_estimated-crop-irrigation-water-use-withdrawals-in-lower-san-pedro-groundwater-basin-arizo/
    Explore at:
    Dataset updated
    May 6, 2005
    Description

    Observations of irrigated agricultural land within the Lower San Pedro Groundwater Basin in Arizona. Crops were verified in situ once in 2020 on July 14th; based on digitized field boundaries. Field boundaries were digitized from U.S. Department of Agriculture, National Agricultural Imagery Program images dated 2019 and supplemented with Landsat and Sentinel2 imagery collections accessed via the U.S. Geological Survey LandLook Viewer (https://landlook.usgs.gov/) and Sentinel Hub, Sentinel Playground (https://apps.sentinel-hub.com/sentinel-playground). Satellite images were also used to identify the length of the growing season and crop condition. Water withdrawals were calculated using the modified Blaney-Criddle model of calculating consumptive use (U.S. Bureau of Reclamation, 1992 appendix A) using crop coefficients from Doorenbos and Pruitt (1975), the number of acres with active crops, crop condition, and irrigation system efficiency. The withdrawal equation was modified from "Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000" (Tadayon, 2005) to account for variations in water application.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
AmeriGEOSS (2018). LandsatLook Viewer [Dataset]. https://hub.arcgis.com/items/amerigeoss::landsatlook-viewer

LandsatLook Viewer

Explore at:
142 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 9, 2018
Dataset authored and provided by
AmeriGEOSS
Description

Welcome to the LandsatLook Viewer!The LandsatLook Viewer is a prototype tool that was developed to allow rapid online viewing and access to the USGS Landsat image archives. This viewer allows you to:Interactively explore the Landsat archive at up to full resolution directly from a common web browserSearch for specific Landsat images based on area of interest, acquisition date, or cloud coverCompare image features and view changes through timeDisplay configurable map information layers in combination with the Landsat imageryCreate a customized image display and export as a simple graphic fileView metadata and download the full-band source imagerySearch by address or place, or zoom to a point, bounding box, or Sentinel-2 Tile or Landsat WRS-1 or WRS-2 Path/RowGenerate and download a video animation of the oldest to newest images displayed in the viewerWe welcome feedback and input for future versions of this Viewer! Please provide your comments or suggestions .About the ImageryThis viewer provides visual and download access to the USGS LandsatLook "Natural Color" imageproduct archive.BackgroundThe Landsat satellites have been collecting multispectral images of Earth from space since 1972. Each image contains multiple bands of spectral information which may require significant user time, system resources, and technical expertise to obtain a visual result. As a result, the use and access to Landsat data has been historically limited to the scientific and technical user communities.The LandsatLook “Natural Color” image product option was created to provide Landsat imagery in a simple user-friendly and viewer-ready format, based on specific bands that have been selected and arranged to simulate natural color. This type of product allows easy visualization of the archived Landsat image without any need for specialized software or technical expertise.LandsatLook ViewerThe LandsatLook Viewer displays the LandsatLook Natural Color image product for all Landsat 1-8 images in the USGS archive and was designed primarily for visualization purposes.The imagery within this Viewer will be of value to anyone who wants to quickly see the full Landsat record for an area, along with major image features or obvious changes to Earth’s surface through time. An area of interest may be extracted and downloaded as a simple graphic file directly through the viewer, and the original full image tile is also available if needed. Any downloaded LandsatLook image product is a georeferenced file and will be compatible within most GIS and Web mapping applications.If the user needs to perform detailed technical analysis, the full bands of Landsat source data may also be accessed through direct links provided on the LandsatLook Viewer.Image ServicesThe imagery that is visible on this LandsatLook Viewer is based on Web-based ArcGIS image services. The underlying REST service endpoints for the LandsatLook imagery are available at https://landsatlook.usgs.gov/arcgis/rest/services/LandsatLook/ImageServer .Useful linksLandsat- Landsat Mission (USGS)- Landsat Science (NASA)LandsatLook- Product Description- USGS Fact Sheet- LandsatLook image services (REST)Landsat Products- Landsat 8 OLI/TIRS- Landsat 7 ETM+- Landsat 4-5 TM- Landsat 1-5 MSS- Landsat Band DesignationsLandsatLook images are full-resolution files derived from Landsat Level-1 data products. The images are compressed and stretched to create an image optimized for image selection and visual interpretation. It is recommended that these images not be used in image analysis.LandsatLook image files are included as options when downloading Landsat scenes from EarthExplorer, GloVis, or the LandsatLook Viewer (See Figure 1).Figure 1. LandsatLook and Level-1 product download optionsLandsatLook Natural Color ImageThe LandsatLook Natural Color image is a .jpg composite of three bands to show a “natural” looking (false color) image. Reflectance values were calculated from the calibrated scaled digital number (DN) image data. The reflectance values were scaled to a 1-255 range using a gamma stretch with a gamma=2.0. This stretch was designed to emphasize vegetation without clipping the extreme values.Landsat 8 OLI = Bands 6,5,4Landsat 7 ETM+ and Landsat 4-5 TM = Bands 5,4,3Landsat 4-5 MSS = Bands 2,4,1Landsat 1-3 MSS = Bands 7,5,4LandsatLook Thermal ImageThe LandsatLook Thermal image is a one-band gray scale .jpg image that displays thermal properties of a Landsat scene. Image brightness temperature values were calculated from the calibrated scaled digital number (DN) image data. An image specific 2 percent clip and a linear stretch to 1-255 were applied to the brightness temperature values.Landsat 8 TIRS = Band 10Landsat 7 ETM+ = Band 61-high gainLandsat 4-5 TM = Band 6Landsat 1-5 MSS = not availableLandsatLook Quality ImageLandsatLook Quality images are 8-bit files generated from the Landsat Level-1 Quality band to provide a quick view of the quality of the pixels within the scene to determine if a particular scene would work best for the user's application. This file includes values representing bit-packed combinations of surface, atmosphere, and sensor conditions that can affect the overall usefulness of a given pixel. Color mapping assignments can be seen in the tables below. For each Landsat scene, LandsatLook Quality images can be downloaded individually in .jpg format, or as a GeoTIFF format file (_QB.TIF) within the LandsatLook Images with Geographic Reference file.Landsat Collection 1 LandsatLook 8-bit Quality Images DesignationsLandsat 8 OLI/TIRSLandsat 7 ETM+, Landsat 4-5 TMLandsat 1-5 MSSColorBitDescriptionBitDescriptionBitDescription 0Designated Fill0Designated Fill0Designated Fill 1Terrain Occlusion1Dropped Pixel1Dropped Pixel 2Radiometric Saturation 2Radiometric Saturation ​2Radiometric Saturation 3Cloud3Cloud3Cloud 4Cloud Shadow4Cloud Shadow 4Unused 5Snow/Ice 5Snow/Ice 5Unused 6Cirrus 6Unused6Unused 7Unused7Unused7UnusedUnusedTable 1. Landsat Collection 1 LandsatLook 8-bit Quality Images Designations LandsatLook Images with Geographic ReferenceThe LandsatLook Image with Geographic Reference is a .zip file bundle that contains the Natural Color, Thermal, and the 8-bit Quality images in georeferenced GeoTiff (.TIF) file format.Figure 2. LandsatLook Natural Color Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 3. LandsatLook Thermal Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013Figure 4. LandsatLook Quality Image: Landsat 8 Path 45 Row 30 Acquired April 23, 2013 with background color set to dark grey. Additional Information About LandsatLook ImagesMany geographic information systems and image processing software packages easily support .jpg images. To create these files, Landsat data is mapped to a 1-255 range, with the fill area set to zero (if a no-data value is set to zero, the compression algorithm may introduce zero-value artifacts into the data area causing very dark data values to be displayed as no-data).

Search
Clear search
Close search
Google apps
Main menu