https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.
The global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Big Data Market Size 2025-2029
The big data market size is forecast to increase by USD 193.2 billion at a CAGR of 13.3% between 2024 and 2029.
The market is experiencing a significant rise due to the increasing volume of data being generated across industries. This data deluge is driving the need for advanced analytics and processing capabilities to gain valuable insights and make informed business decisions. A notable trend in this market is the rising adoption of blockchain solutions to enhance big data implementation. Blockchain's decentralized and secure nature offers an effective solution to address data security concerns, a growing challenge in the market. However, the increasing adoption of big data also brings forth new challenges. Data security issues persist as organizations grapple with protecting sensitive information from cyber threats and data breaches.
Companies must navigate these challenges by investing in robust security measures and implementing best practices to mitigate risks and maintain trust with their customers. To capitalize on the market opportunities and stay competitive, businesses must focus on harnessing the power of big data while addressing these challenges effectively. Deep learning frameworks and machine learning algorithms are transforming data science, from data literacy assessments to computer vision models.
What will be the Size of the Big Data Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free Sample
In today's data-driven business landscape, the demand for advanced data management solutions continues to grow. Companies are investing in business intelligence dashboards and data analytics tools to gain insights from their data and make informed decisions. However, with this increased reliance on data comes the need for robust data governance policies and regular data compliance audits. Data visualization software enables businesses to effectively communicate complex data insights, while data engineering ensures data is accessible and processed in real-time. Data-driven product development and data architecture are essential for creating agile and responsive business strategies. Data management encompasses data accessibility standards, data privacy policies, and data quality metrics.
Data usability guidelines, prescriptive modeling, and predictive modeling are critical for deriving actionable insights from data. Data integrity checks and data agility assessments are crucial components of a data-driven business strategy. As data becomes an increasingly valuable asset, businesses must prioritize data security and privacy. Prescriptive and predictive modeling, data-driven marketing, and data culture surveys are key trends shaping the future of data-driven businesses. Data engineering, data management, and data accessibility standards are interconnected, with data privacy policies and data compliance audits ensuring regulatory compliance.
Data engineering and data architecture are crucial for ensuring data accessibility and enabling real-time data processing. The data market is dynamic and evolving, with businesses increasingly relying on data to drive growth and inform decision-making. Data engineering, data management, and data analytics tools are essential components of a data-driven business strategy, with trends such as data privacy, data security, and data storytelling shaping the future of data-driven businesses.
How is this Big Data Industry segmented?
The big data industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
On-premises
Cloud-based
Hybrid
Type
Services
Software
End-user
BFSI
Healthcare
Retail and e-commerce
IT and telecom
Others
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
Australia
China
India
Japan
South Korea
Rest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.
In the realm of big data, on-premise and cloud-based deployment models cater to varying business needs. On-premise deployment allows for complete control over hardware and software, making it an attractive option for some organizations. However, this model comes with a significant upfront investment and ongoing maintenance costs. In contrast, cloud-based deployment offers flexibility and scalability, with service providers handling infrastructure and maintenance. Yet, it introduces potential security risks, as data is accessed through multiple points and stored on external servers. Data
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Big Data Analytics In Healthcare Market size is estimated at USD 37.22 Billion in 2024 and is projected to reach USD 74.82 Billion by 2032, growing at a CAGR of 9.12% from 2026 to 2032.
Big Data Analytics In Healthcare Market: Definition/ Overview
Big Data Analytics in Healthcare, often referred to as health analytics, is the process of collecting, analyzing, and interpreting large volumes of complex health-related data to derive meaningful insights that can enhance healthcare delivery and decision-making. This field encompasses various data types, including electronic health records (EHRs), genomic data, and real-time patient information, allowing healthcare providers to identify patterns, predict outcomes, and improve patient care.
The statistic shows the problems that organizations face when using big data technologies worldwide as of 2017. Around ** percent of respondents stated that inadequate analytical know-how was a major problem that their organization faced when using big data technologies as of 2017.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global market size for Big Data Analysis Platforms is projected to grow from USD 35.5 billion in 2023 to an impressive USD 110.7 billion by 2032, reflecting a CAGR of 13.5%. This substantial growth can be attributed to the increasing adoption of data-driven decision-making processes across various industries, the rapid proliferation of IoT devices, and the ever-growing volumes of data generated globally.
One of the primary growth factors for the Big Data Analysis Platform market is the escalating need for businesses to derive actionable insights from complex and voluminous datasets. With the advent of technologies such as artificial intelligence and machine learning, organizations are increasingly leveraging big data analytics to enhance their operational efficiency, customer experience, and competitiveness. The ability to process vast amounts of data quickly and accurately is proving to be a game-changer, enabling businesses to make more informed decisions, predict market trends, and optimize their supply chains.
Another significant driver is the rise of digital transformation initiatives across various sectors. Companies are increasingly adopting digital technologies to improve their business processes and meet changing customer expectations. Big Data Analysis Platforms are central to these initiatives, providing the necessary tools to analyze and interpret data from diverse sources, including social media, customer transactions, and sensor data. This trend is particularly pronounced in sectors such as retail, healthcare, and BFSI (banking, financial services, and insurance), where data analytics is crucial for personalizing customer experiences, managing risks, and improving operational efficiencies.
Moreover, the growing adoption of cloud computing is significantly influencing the market. Cloud-based Big Data Analysis Platforms offer several advantages over traditional on-premises solutions, including scalability, flexibility, and cost-effectiveness. Businesses of all sizes are increasingly turning to cloud-based analytics solutions to handle their data processing needs. The ability to scale up or down based on demand, coupled with reduced infrastructure costs, makes cloud-based solutions particularly appealing to small and medium-sized enterprises (SMEs) that may not have the resources to invest in extensive on-premises infrastructure.
Data Science and Machine-Learning Platforms play a pivotal role in the evolution of Big Data Analysis Platforms. These platforms provide the necessary tools and frameworks for processing and analyzing vast datasets, enabling organizations to uncover hidden patterns and insights. By integrating data science techniques with machine learning algorithms, businesses can automate the analysis process, leading to more accurate predictions and efficient decision-making. This integration is particularly beneficial in sectors such as finance and healthcare, where the ability to quickly analyze complex data can lead to significant competitive advantages. As the demand for data-driven insights continues to grow, the role of data science and machine-learning platforms in enhancing big data analytics capabilities is becoming increasingly critical.
From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies, high adoption rates of advanced technologies, and substantial investments in data analytics infrastructure. Europe and the Asia Pacific regions are also experiencing significant growth, fueled by increasing digitalization efforts and the rising importance of data analytics in business strategy. The Asia Pacific region, in particular, is expected to witness the highest CAGR during the forecast period, propelled by rapid economic growth, a burgeoning middle class, and increasing internet and smartphone penetration.
The Big Data Analysis Platform market can be broadly categorized into three components: Software, Hardware, and Services. The software segment includes analytics software, data management software, and visualization tools, which are crucial for analyzing and interpreting large datasets. This segment is expected to dominate the market due to the continuous advancements in analytics software and the increasing need for sophisticated data analysis tools. Analytics software enables organizations to process and analyze data from multiple sources,
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Hadoop Big Data Analytics Market report segments the industry into Solution (Data Discovery and Visualization (DDV), Advanced Analytics (AA)), End User (BFSI, Retail, IT and Telecom, Healthcare and Life Sciences, Manufacturing, Media and Entertainment, Other End Users), and Geography (North America, Europe, Asia-Pacific, Latin America, Middle-East and Africa).
This statistic shows the importance of big data analysis and machine learning technologies worldwide as of 2019. Tensorflow was seen as the most important big data analytics and machine learning technology, with ** percent of respondents stating that it was important to critial for their organization.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The report covers Global Supply Chain Big Data Analytics Market Size and it is segmented by Type (Solution, Service), End User (Retail, Manufacturing, Transportation and Logistics, Healthcare, Other End Users), and Geography (North America, Europe, Asia Pacific, Latin America, and Middle East and Africa). The market size and forecasts are provided in terms of value (USD) for all the above segments.
This graph presents the results of a survey, conducted by BARC in 2014/15, into the current and planned use of technology for the analysis of big data. At the beginning of 2015, ** percent of respondents indicated that their company was already using a big data analytical appliance for big data.
As per our latest research, the Big Data Analytics for Clinical Research market size reached USD 7.45 billion globally in 2024, reflecting a robust adoption pace driven by the increasing digitization of healthcare and clinical trial processes. The market is forecasted to grow at a CAGR of 17.2% from 2025 to 2033, reaching an estimated USD 25.54 billion by 2033. This significant growth is primarily attributed to the rising need for real-time data-driven decision-making, the proliferation of electronic health records (EHRs), and the growing emphasis on precision medicine and personalized healthcare solutions. The industry is experiencing rapid technological advancements, making big data analytics a cornerstone in transforming clinical research methodologies and outcomes.
Several key growth factors are propelling the expansion of the Big Data Analytics for Clinical Research market. One of the primary drivers is the exponential increase in clinical data volumes from diverse sources, including EHRs, wearable devices, genomics, and imaging. Healthcare providers and research organizations are leveraging big data analytics to extract actionable insights from these massive datasets, accelerating drug discovery, optimizing clinical trial design, and improving patient outcomes. The integration of artificial intelligence (AI) and machine learning (ML) algorithms with big data platforms has further enhanced the ability to identify patterns, predict patient responses, and streamline the entire research process. These technological advancements are reducing the time and cost associated with clinical research, making it more efficient and effective.
Another significant factor fueling market growth is the increasing collaboration between pharmaceutical & biotechnology companies and technology firms. These partnerships are fostering the development of advanced analytics solutions tailored specifically for clinical research applications. The demand for real-world evidence (RWE) and real-time patient monitoring is rising, particularly in the context of post-market surveillance and regulatory compliance. Big data analytics is enabling stakeholders to gain deeper insights into patient populations, treatment efficacy, and adverse event patterns, thereby supporting evidence-based decision-making. Furthermore, the shift towards decentralized and virtual clinical trials is creating new opportunities for leveraging big data to monitor patient engagement, adherence, and safety remotely.
The regulatory landscape is also evolving to accommodate the growing use of big data analytics in clinical research. Regulatory agencies such as the FDA and EMA are increasingly recognizing the value of data-driven approaches for enhancing the reliability and transparency of clinical trials. This has led to the establishment of guidelines and frameworks that encourage the adoption of big data technologies while ensuring data privacy and security. However, the implementation of stringent data protection regulations, such as GDPR and HIPAA, poses challenges related to data integration, interoperability, and compliance. Despite these challenges, the overall outlook for the Big Data Analytics for Clinical Research market remains highly positive, with sustained investments in digital health infrastructure and analytics capabilities.
From a regional perspective, North America currently dominates the Big Data Analytics for Clinical Research market, accounting for the largest share due to its advanced healthcare infrastructure, high adoption of digital technologies, and strong presence of leading pharmaceutical companies. Europe follows closely, driven by increasing government initiatives to promote health data interoperability and research collaborations. The Asia Pacific region is emerging as a high-growth market, supported by expanding healthcare IT investments, rising clinical trial activities, and growing awareness of data-driven healthcare solutions. Latin America and the Middle East & Africa are also witnessing gradual adoption, albeit at a slower pace, due to infrastructural and regulatory challenges. Overall, the global market is poised for substantial growth across all major regions over the forecast period.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
In 2023, the global Big Data and Business Analytics market size is estimated to be valued at approximately $274 billion, and with a projected compound annual growth rate (CAGR) of 12.4%, it is anticipated to reach around $693 billion by 2032. This significant growth is driven by the escalating demand for data-driven decision-making processes across various industries, which leverage insights derived from vast data sets to enhance business efficiency, optimize operations, and drive innovation. The increasing adoption of Internet of Things (IoT) devices, coupled with the exponential growth of data generated daily, further propels the need for advanced analytics solutions to harness and interpret this information effectively.
A critical growth factor in the Big Data and Business Analytics market is the increasing reliance on data to gain a competitive edge. Organizations are now more than ever looking to uncover hidden patterns, correlations, and insights from the data they collect to make informed decisions. This trend is especially prominent in industries such as retail, where understanding consumer behavior can lead to personalized marketing strategies, and in healthcare, where data analytics can improve patient outcomes through precision medicine. Moreover, the integration of big data analytics with artificial intelligence and machine learning technologies is enabling more accurate predictions and real-time decision-making, further enhancing the value proposition of these analytics solutions.
Another key driver of market growth is the continuous technological advancements and innovations in data analytics tools and platforms. Companies are increasingly investing in advanced analytics capabilities, such as predictive analytics, prescriptive analytics, and real-time analytics, to gain deeper insights into their operations and market environments. The development of user-friendly and self-service analytics tools is also democratizing data access within organizations, empowering employees at all levels to leverage data in their daily decision-making processes. This democratization of data analytics is reducing the reliance on specialized data scientists, thereby accelerating the adoption of big data analytics across various business functions.
The increasing emphasis on regulatory compliance and data privacy is also driving growth in the Big Data and Business Analytics market. Strict regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, require organizations to manage and analyze data responsibly. This is prompting businesses to invest in robust analytics solutions that not only help them comply with these regulations but also ensure data integrity and security. Additionally, as data breaches and cybersecurity threats continue to rise, organizations are turning to analytics solutions to identify potential vulnerabilities and mitigate risks effectively.
Regionally, North America remains a dominant player in the Big Data and Business Analytics market, benefiting from the presence of major technology companies and a high rate of digital adoption. The Asia Pacific region, however, is emerging as a significant growth area, driven by rapid industrialization, urbanization, and increasing investments in digital transformation initiatives. Europe also showcases a robust market, fueled by stringent data protection regulations and a strong focus on innovation. Meanwhile, the markets in Latin America and the Middle East & Africa are gradually gaining momentum as organizations in these regions are increasingly recognizing the value of data analytics in enhancing business outcomes and driving economic growth.
The Big Data and Business Analytics market is segmented by components into software, services, and hardware, each playing a crucial role in the ecosystem. Software components, which include data management and analytics tools, are at the forefront, offering solutions that facilitate the collection, analysis, and visualization of large data sets. The software segment is driven by a demand for scalable solutions that can handle the increasing volume, velocity, and variety of data. As organizations strive to become more data-centric, there is a growing need for advanced analytics software that can provide actionable insights from complex data sets, leading to enhanced decision-making capabilities.
In the services segment, businesses are increasingly seeking consultation, implementation, and support services to effective
https://www.techsciresearch.com/privacy-policy.aspxhttps://www.techsciresearch.com/privacy-policy.aspx
Saudi Arabia Big Data Analytics Market was valued at USD 3.58 Billion in 2024 and is expected to reach USD 12.24 Billion by 2030 with a CAGR of 22.74% during the forecast period.
Pages | 70 |
Market Size | 2024: USD 3.58 Billion |
Forecast Market Size | 2030: USD 12.24 Billion |
CAGR | 2025-2030: 22.74% |
Fastest Growing Segment | BFSI |
Largest Market | Northern & Central Saudi Arabia |
Key Players | 1. Saudi Telecom Company 2. Zain Saudi Arabia 3. Elm Company 4. Mozn AI Solutions 5. T SAB IT & Technology Consulting 6. Oracle Corporation 7. Microsoft Corporation 8. SAP SE |
In 2023, around **** percent of companies that used big data analysis and related services in South Korea did so with public data. Following this was the analysis of customer information, at around **** percent.
https://www.techsciresearch.com/privacy-policy.aspxhttps://www.techsciresearch.com/privacy-policy.aspx
France Big Data Market was valued at USD 14.51 Billion in 2023 and is expected to reach USD 26.09 Billion by 2029 with a CAGR of 10.11% during the forecast period.
Pages | 86 |
Market Size | 2023: USD 14.51 Billion |
Forecast Market Size | 2029: USD 26.09 Billion |
CAGR | 2024-2029: 10.11% |
Fastest Growing Segment | Manufacturing |
Largest Market | Ile-de-France |
Key Players | 1. IBM Corporation 2. Microsoft Corporation 3. Amazon Web Services, Inc. 4. Oracle Corporation 5. SAP SE 6. Hewlett Packard Enterprise Company 7. Teradata Corporation 8. Snowflake Inc. |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionIn recent years, numerous AI tools have been employed to equip learners with diverse technical skills such as coding, data analysis, and other competencies related to computational sciences. However, the desired outcomes have not been consistently achieved. This study aims to analyze the perspectives of students and professionals from non-computational fields on the use of generative AI tools, augmented with visualization support, to tackle data analytics projects. The focus is on promoting the development of coding skills and fostering a deep understanding of the solutions generated. Consequently, our research seeks to introduce innovative approaches for incorporating visualization and generative AI tools into educational practices.MethodsThis article examines how learners perform and their perspectives when using traditional tools vs. LLM-based tools to acquire data analytics skills. To explore this, we conducted a case study with a cohort of 59 participants among students and professionals without computational thinking skills. These participants developed a data analytics project in the context of a Data Analytics short session. Our case study focused on examining the participants' performance using traditional programming tools, ChatGPT, and LIDA with GPT as an advanced generative AI tool.ResultsThe results shown the transformative potential of approaches based on integrating advanced generative AI tools like GPT with specialized frameworks such as LIDA. The higher levels of participant preference indicate the superiority of these approaches over traditional development methods. Additionally, our findings suggest that the learning curves for the different approaches vary significantly. Since learners encountered technical difficulties in developing the project and interpreting the results. Our findings suggest that the integration of LIDA with GPT can significantly enhance the learning of advanced skills, especially those related to data analytics. We aim to establish this study as a foundation for the methodical adoption of generative AI tools in educational settings, paving the way for more effective and comprehensive training in these critical areas.DiscussionIt is important to highlight that when using general-purpose generative AI tools such as ChatGPT, users must be aware of the data analytics process and take responsibility for filtering out potential errors or incompleteness in the requirements of a data analytics project. These deficiencies can be mitigated by using more advanced tools specialized in supporting data analytics tasks, such as LIDA with GPT. However, users still need advanced programming knowledge to properly configure this connection via API. There is a significant opportunity for generative AI tools to improve their performance, providing accurate, complete, and convincing results for data analytics projects, thereby increasing user confidence in adopting these technologies. We hope this work underscores the opportunities and needs for integrating advanced LLMs into educational practices, particularly in developing computational thinking skills.
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global business big data market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the proliferation of connected devices generating massive amounts of data, and the growing need for data-driven decision-making across various industries. The market's expansion is fueled by a surge in demand for advanced analytics, predictive modeling, and real-time data processing capabilities to optimize business operations, enhance customer experiences, and gain a competitive edge. While the exact market size for 2025 is unavailable, considering a plausible CAGR of 15% (a common growth rate for rapidly expanding technology sectors) and a starting point estimated at $150 billion in 2024, the market size in 2025 could reasonably be estimated around $172.5 billion. This growth is anticipated to continue into the forecast period (2025-2033), driven by factors such as increasing digital transformation initiatives across enterprises, the rise of artificial intelligence (AI) and machine learning (ML) applications, and the growing need for regulatory compliance involving data management and analysis. The market is segmented by application (individual users and enterprise users) and type (cloud-based and local-based). The enterprise user segment is currently dominating, owing to the higher data volumes and analytical needs of large organizations. Cloud-based solutions are experiencing faster growth due to their scalability, cost-effectiveness, and accessibility. Geographic distribution shows strong growth across North America and Asia Pacific, fueled by robust technological infrastructure and high levels of digital adoption in regions like the United States and China. However, growth is also expected in emerging economies driven by increasing internet and smartphone penetration and the adoption of big data technologies by a wider range of businesses. While challenges like data security concerns and the need for skilled professionals to manage and analyze big data present restraints, the overall market outlook remains strongly positive due to the transformative potential of big data analytics across various sectors.
https://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Survey on the Use of Information and Communication Technologies and Electronic Commerce in Companies: Big Data Analysis. National.
This statistic shows the results of a survey on data-driven projects, either planned or implemented, among technology magazine readers. In 2015, ** percent of respondents indicated that their companies had already deployed or implemented a data-driven project. Fewer than a third of respondents said their companies had no plans to deploy or implement a data-driven project.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Big Data Analytics in Banking Market is Segmented by Type of Solutions (Data Discovery and Visualization (DDV) and Advanced Analytics (AA)), and Geography (North America, Europe, Asia-Pacific, Latin America, Middle East and Africa). The Market Sizes and Forecasts are Provided in Terms of Value (USD Million) for all the Above Segments.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Data Analytics in Retail Industry is segmented by Application (Merchandising and Supply Chain Analytics, Social Media Analytics, Customer Analytics, Operational Intelligence, Other Applications), by Business Type (Small and Medium Enterprises, Large-scale Organizations), and Geography. The market size and forecasts are provided in terms of value (USD billion) for all the above segments.