Facebook
TwitterHi Folks,
Let's understand the importance of Data Visualization.
Here below, we have four different data sets and they are paired in the sense of x and y.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2F4f6c696e3ad5e2c887b01a0bdd14b355%2Fdata_set.png?generation=1685190700223447&alt=media" alt="">
Next let's calculate some descriptive statistics such as mean, standard deviation and correlation of each variables.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2F14765ba12bdc18b8ff67cb6a9f2d7c7a%2Fstatistics.png?generation=1685192394142325&alt=media" alt="">
After examining the descriptive statistics the above four data sets have nearly identical or similar simple descriptive statistics.
However, when we graphically plot the datasets on scatter plot, we can see the difference that these 4 datasets looks very different.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2Fdbccf9dc638d3de28930b9f660e5f5a4%2Fgarph.png?generation=1685191588780934&alt=media" alt="">
Data 1 has a clear linear relationship, Data 2 has a curved relationship that is not linear, Data 3 has a tight linear relationship with one outlier and Data 4 has a linear relationship with one large outlier.
Such datasets are known as Anscombe's Quartet
Anscombe's quartet is a classic example of the importance of data visualization.
Anscombe's quartet is a set of four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphically represented. Each dataset consists of eleven (x,y) points.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2F2b964d437afe17db949c57988b5fba05%2Fanscombes_quartet.png?generation=1685192626504792&alt=media" alt="">
Anscombe's quartet illustrates the importance of plotting data before we analyze it. Descriptive statistics can be misleading, and they can't tell us everything we need to know about a dataset. Plotting the data on charts can help us to understand the shape of the distribution and to identify any outliers.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is a cleaned version of the Chicago Crime Dataset, which can be found here. All rights for the dataset go to the original owners. The purpose of this dataset is to display my skills in visualizations and creating dashboards. To be specific, I will attempt to create a dashboard that will allow users to see metrics for a specific crime within a given year using filters and metrics. Due to this, there will not be much of a focus on the analysis of the data, but there will be portions discussing the validity of the dataset, the steps I took to clean the data, and how I organized it. The cleaned datasets can be found below, the Query (which utilized BigQuery) can be found here and the Tableau dashboard can be found here.
The dataset comes directly from the City of Chicago's website under the page "City Data Catalog." The data is gathered directly from the Chicago Police's CLEAR (Citizen Law Enforcement Analysis and Reporting) and is updated daily to present the information accurately. This means that a crime on a specific date may be changed to better display the case. The dataset represents crimes starting all the way from 2001 to seven days prior to today's date.
Using the ROCCC method, we can see that: * The data has high reliability: The data covers the entirety of Chicago from a little over 2 decades. It covers all the wards within Chicago and even gives the street names. While we may not have an idea for how big the sample size is, I do believe that the dataset has high reliability since it geographically covers the entirety of Chicago. * The data has high originality: The dataset was gained directly from the Chicago Police Dept. using their database, so we can say this dataset is original. * The data is somewhat comprehensive: While we do have important information such as the types of crimes committed and their geographic location, I do not think this gives us proper insights as to why these crimes take place. We can pinpoint the location of the crime, but we are limited by the information we have. How hot was the day of the crime? Did the crime take place in a neighborhood with low-income? I believe that these key factors prevent us from getting proper insights as to why these crimes take place, so I would say that this dataset is subpar with how comprehensive it is. * The data is current: The dataset is updated frequently to display crimes that took place seven days prior to today's date and may even update past crimes as more information comes to light. Due to the frequent updates, I do believe the data is current. * The data is cited: As mentioned prior, the data is collected directly from the polices CLEAR system, so we can say that the data is cited.
The purpose of this step is to clean the dataset such that there are no outliers in the dashboard. To do this, we are going to do the following: * Check for any null values and determine whether we should remove them. * Update any values where there may be typos. * Check for outliers and determine if we should remove them.
The following steps will be explained in the code segments below. (I used BigQuery for this so the coding will follow BigQuery's syntax) ```
SELECT
*
FROM
portfolioproject-350601.ChicagoCrime.Crime
LIMIT 1000;
SELECT
*
FROM
portfolioproject-350601.ChicagoCrime.Crime
WHERE
unique_key IS NULL OR
case_number IS NULL OR
date IS NULL OR
primary_type IS NULL OR
location_description IS NULL OR
arrest IS NULL OR
longitude IS NULL OR
latitude IS NULL;
DELETE FROM
portfolioproject-350601.ChicagoCrime.Crime
WHERE
unique_key IS NULL OR
case_number IS NULL OR
date IS NULL OR
primary_type IS NULL OR
location_description IS NULL OR
arrest IS NULL OR
longitude IS NULL OR
latitude IS NULL;
SELECT unique_key, COUNT(unique_key) FROM `portfolioproject-350601.ChicagoCrime....
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Presentation Date: Monday, April 1, 2019. Location: Radcliffe Institute for Advanced Study at Harvard, Cambridge, MA. Abstract: Innovative data visualization reveals patterns and trends otherwise unseen. The four speakers in this program represent a range of visualization expertise, from human cognition to user interaction to tool design to the use of visualizations in journalism. As data sets in science, medicine, and business become larger and more diverse, the need for—and the impact of—good visualization is growing rapidly. The presentations will highlight a wide scope of visualization’s applicability, using examples from personalized medicine, government, education, basic science, climate change, and more.
Facebook
Twitterhttps://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-4441https://darus.uni-stuttgart.de/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=doi:10.18419/DARUS-4441
This dataset contains the supplemental material for "Out-of-Core Dimensionality Reduction for Large Data via Out-of-Sample Extensions". The contents and usage of this dataset are described in the README.md files.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.
Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.
Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.
Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.
Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.
Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.
Column Definitions:
Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository accompanying the article “DEVILS: a tool for the visualization of large datasets with a high dynamic range” contains the following:
Extended Material of the article
An example raw dataset corresponding to the images shown in Fig. 3
A workflow description that demonstrates the use of the DEVILS workflow with BigStitcher.
Two scripts (“CLAHE_Parameters_test.ijm” and a “DEVILS_Parallel_tests.groovy”) used for Figure S2, S3 and S4.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data in behavioral research is often quantified with event-logging software, generating large data sets containing detailed information about subjects, recipients, and the duration of behaviors. Exploring and analyzing such large data sets can be challenging without tools to visualize behavioral interactions between individuals or transitions between behavioral states, yet software that can adequately visualize complex behavioral data sets is rare. TIBA (The Interactive Behavior Analyzer) is a web application for behavioral data visualization, which provides a series of interactive visualizations, including the temporal occurrences of behavioral events, the number and direction of interactions between individuals, the behavioral transitions and their respective transitional frequencies, as well as the visual and algorithmic comparison of the latter across data sets. It can therefore be applied to visualize behavior across individuals, species, or contexts. Several filtering options (selection of behaviors and individuals) together with options to set node and edge properties (in the network drawings) allow for interactive customization of the output drawings, which can also be downloaded afterwards. TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. The web application and usage instructions are available at tiba.inf.uni-konstanz.de. The source code is publicly available on GitHub: github.com/LSI-UniKonstanz/tiba.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data in behavioral research is often quantified with event-logging software, generating large data sets containing detailed information about subjects, recipients, and the duration of behaviors. Exploring and analyzing such large data sets can be challenging without tools to visualize behavioral interactions between individuals or transitions between behavioral states, yet software that can adequately visualize complex behavioral data sets is rare. TIBA (The Interactive Behavior Analyzer) is a web application for behavioral data visualization, which provides a series of interactive visualizations, including the temporal occurrences of behavioral events, the number and direction of interactions between individuals, the behavioral transitions and their respective transitional frequencies, as well as the visual and algorithmic comparison of the latter across data sets. It can therefore be applied to visualize behavior across individuals, species, or contexts. Several filtering options (selection of behaviors and individuals) together with options to set node and edge properties (in the network drawings) allow for interactive customization of the output drawings, which can also be downloaded afterwards. TIBA accepts data outputs from popular logging software and is implemented in Python and JavaScript, with all current browsers supported. The web application and usage instructions are available at tiba.inf.uni-konstanz.de. The source code is publicly available on GitHub: github.com/LSI-UniKonstanz/tiba.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Notice: Ethical Use OnlyThis repository provides code and datasets for academic research on misinformation.Please note that the datasets include rumor-related texts. These materials are supplied solely for scholarly analysis and research aimed at understanding and combating misinformation.Prohibited UseDo not use this repository, including its code or data, to create or spread false information in any real-world context.Any misuse of these resources for malicious purposes is strictly forbidden.DisclaimerThe authors bear no responsibility for any unethical or unlawful use of the provided resources.By accessing or using this repository, you acknowledge and agree to comply with these ethical guidelines.Project StructureThe project is organized into three main directories, each corresponding to a major section of the paper's experiments:main_data_and_code/├── rumor_generation/├── rumor_detection/└── rumor_debunking/How to Get StartedPrerequisitesTo successfully run the code and reproduce the results, you will need to:Obtain and configure your own API key for the large language models (LLMs) used in the experiments. Please replace the placeholder API key in the code with your own.For the rumor detection experiments, download the public datasets (Twitter15, Twitter16, FakeNewsNet) from their respective sources. The pre-process scripts in the rumor detection folder must be run first to prepare the public datasets.Please note that many scripts are provided as examples using the Twitter15 dataset. To run experiments on other datasets like Twitter16 or FakeNewsNet, you will need to modify these scripts or create copies and update the corresponding file paths.Detailed Directory Breakdown1. rumor_generation/This directory contains all the code and data related to the rumor generation experiments.rumor_generation_zeroshot.py: Code for the zero-shot rumor generation experiment.rumor_generation_fewshot.py: Code for the few-shot rumor generation experiment.rumor_generation_cot.py: Code for the chain-of-thought (CoT) rumor generation experiment.token_distribution.py: Script to analyze token distribution in the generated text.label_rumors.py:Script to label LLM-generated texts based on whether they contain rumor-related content.extract_reasons.py: Script to extract reasons for rumor generation and rejection.visualization.py: Utility script for generating figures.LDA.py: Code for performing LDA topic modeling on the generated data.rumor_generation_responses.json: The complete output dataset from the rumor generation experiments.generation_reasons_extracted.json: The extracted reasons for generated rumors.rejection_reasons_extracted.json: The extracted reasons for rejected rumor generation requests.2. rumor_detection/This directory contains the code and data used for the rumor detection experiments.nonreasoning_zeroshot_twitter15.py: Code for the non-reasoning, zero-shot detection on the Twitter15 dataset. To run on Twitter16 or FakeNewsNet, update the file paths within the script. Similar experiment scripts below follow the same principle and are not described repeatedly.nonreasoning_fewshot_twitter15.py: Code for the non-reasoning, few-shot detection on the Twitter15 dataset.nonreasoning_cot_twitter15.py: Code for the non-reasoning, CoT detection on the Twitter15 dataset.reasoning_zeroshot_twitter15.py: Code for the Reasoning LLMs, zero-shot detection on the Twitter15 dataset.reasoning_fewshot_twitter15.py: Code for the Reasoning LLMs, few-shot detection on the Twitter15 dataset.reasoning_cot_twitter15.py: Code for the Reasoning LLMs, CoT detection on the Twitter15 dataset.traditional_model.py: Code for the traditional models used as baselines.preprocess_twitter15_and_twitter16.py: Script for preprocessing the Twitter15 and Twitter16 datasets.preprocess_fakenews.py: Script for preprocessing the FakeNewsNet dataset.generate_summary_table.py: Calculates all classification metrics and generates the final summary table for the rumor detection experiments.select_few_shot_example_15.py: Script to pre-select few-shot examples, using the Twitter15 dataset as an example. To generate examples for Twitter16 or FakeNewsNet, update the file paths within the script.twitter15_few_shot_examples.json: Pre-selected few-shot examples for the Twitter15 dataset.twitter16_few_shot_examples.json: Pre-selected few-shot examples for the Twitter16 dataset.fakenewsnet_few_shot_examples.json: Pre-selected few-shot examples for the FakeNewsNet dataset.twitter15_llm_results.json: LLM prediction results on the Twitter15 dataset.twitter16_llm_results.json: LLM prediction results on the Twitter16 dataset.fakenewsnet_llm_results.json: LLM prediction results on the FakeNewsNet dataset.visualization.py: Utility script for generating figures.3. rumor_debunking/This directory contains all the code and data for the rumor debunking experiments.analyze_sentiment.py: Script for analyzing the sentiment of the debunking texts.calculate_readability.py: Script for calculating the readability score of the debunking texts.plot_readability.py: Utility script for generating figures related to readability.fact_checking_with_nli.py: Code for the NLI-based fact-checking experiment.debunking_results.json: The dataset containing the debunking results for this experimental section.debunking_results_with_readability.json: The dataset containing the debunking results along with readability scores.sentiment_analysis/: This directory contains the result file from the sentiment analysis.debunking_results_with_sentiment.json: The dataset containing the debunking results along with sentiment analysis.Please contact the repository owner if you encounter any problems or have questions about the code or data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
3DHD CityScenes is the most comprehensive, large-scale high-definition (HD) map dataset to date, annotated in the three spatial dimensions of globally referenced, high-density LiDAR point clouds collected in urban domains. Our HD map covers 127 km of road sections of the inner city of Hamburg, Germany including 467 km of individual lanes. In total, our map comprises 266,762 individual items.
Our corresponding paper (published at ITSC 2022) is available here. Further, we have applied 3DHD CityScenes to map deviation detection here.
Moreover, we release code to facilitate the application of our dataset and the reproducibility of our research. Specifically, our 3DHD_DevKit comprises:
Python tools to read, generate, and visualize the dataset,
3DHDNet deep learning pipeline (training, inference, evaluation) for map deviation detection and 3D object detection.
The DevKit is available here:
https://github.com/volkswagen/3DHD_devkit.
The dataset and DevKit have been created by Christopher Plachetka as project lead during his PhD period at Volkswagen Group, Germany.
When using our dataset, you are welcome to cite:
@INPROCEEDINGS{9921866, author={Plachetka, Christopher and Sertolli, Benjamin and Fricke, Jenny and Klingner, Marvin and Fingscheidt, Tim}, booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)}, title={3DHD CityScenes: High-Definition Maps in High-Density Point Clouds}, year={2022}, pages={627-634}}
Acknowledgements
We thank the following interns for their exceptional contributions to our work.
Benjamin Sertolli: Major contributions to our DevKit during his master thesis
Niels Maier: Measurement campaign for data collection and data preparation
The European large-scale project Hi-Drive (www.Hi-Drive.eu) supports the publication of 3DHD CityScenes and encourages the general publication of information and databases facilitating the development of automated driving technologies.
The Dataset
After downloading, the 3DHD_CityScenes folder provides five subdirectories, which are explained briefly in the following.
This directory contains the training, validation, and test set definition (train.json, val.json, test.json) used in our publications. Respective files contain samples that define a geolocation and the orientation of the ego vehicle in global coordinates on the map.
During dataset generation (done by our DevKit), samples are used to take crops from the larger point cloud. Also, map elements in reach of a sample are collected. Both modalities can then be used, e.g., as input to a neural network such as our 3DHDNet.
To read any JSON-encoded data provided by 3DHD CityScenes in Python, you can use the following code snipped as an example.
import json
json_path = r"E:\3DHD_CityScenes\Dataset\train.json" with open(json_path) as jf: data = json.load(jf) print(data)
Map items are stored as lists of items in JSON format. In particular, we provide:
traffic signs,
traffic lights,
pole-like objects,
construction site locations,
construction site obstacles (point-like such as cones, and line-like such as fences),
line-shaped markings (solid, dashed, etc.),
polygon-shaped markings (arrows, stop lines, symbols, etc.),
lanes (ordinary and temporary),
relations between elements (only for construction sites, e.g., sign to lane association).
Our high-density point cloud used as basis for annotating the HD map is split in 648 tiles. This directory contains the geolocation for each tile as polygon on the map. You can view the respective tile definition using QGIS. Alternatively, we also provide respective polygons as lists of UTM coordinates in JSON.
Files with the ending .dbf, .prj, .qpj, .shp, and .shx belong to the tile definition as “shape file” (commonly used in geodesy) that can be viewed using QGIS. The JSON file contains the same information provided in a different format used in our Python API.
The high-density point cloud tiles are provided in global UTM32N coordinates and are encoded in a proprietary binary format. The first 4 bytes (integer) encode the number of points contained in that file. Subsequently, all point cloud values are provided as arrays. First all x-values, then all y-values, and so on. Specifically, the arrays are encoded as follows.
x-coordinates: 4 byte integer
y-coordinates: 4 byte integer
z-coordinates: 4 byte integer
intensity of reflected beams: 2 byte unsigned integer
ground classification flag: 1 byte unsigned integer
After reading, respective values have to be unnormalized. As an example, you can use the following code snipped to read the point cloud data. For visualization, you can use the pptk package, for instance.
import numpy as np import pptk
file_path = r"E:\3DHD_CityScenes\HD_PointCloud_Tiles\HH_001.bin" pc_dict = {} key_list = ['x', 'y', 'z', 'intensity', 'is_ground'] type_list = ['
Facebook
Twitter
According to our latest research, the global set visualization tools market size reached USD 3.2 billion in 2024, driven by the increasing demand for advanced data analytics and visual representation across diverse industries. The market is expected to grow at a robust CAGR of 12.8% from 2025 to 2033, reaching a forecasted value of USD 9.1 billion by 2033. This significant growth is primarily attributed to the proliferation of big data, the rising importance of data-driven decision-making, and the expansion of digital transformation initiatives worldwide.
One of the primary growth factors fueling the set visualization tools market is the exponential surge in data generation from numerous sources, including IoT devices, enterprise applications, and digital platforms. Organizations are increasingly seeking efficient ways to interpret complex and voluminous datasets, making advanced visualization tools indispensable for extracting actionable insights. The integration of artificial intelligence (AI) and machine learning (ML) into these tools further enhances their capability to identify patterns, trends, and anomalies, thus supporting more informed strategic decisions. As businesses across sectors recognize the value of data visualization in driving operational efficiency and innovation, the adoption of set visualization tools continues to accelerate.
Another key driver is the growing emphasis on business intelligence (BI) and analytics within enterprises of all sizes. Modern set visualization tools are evolving to offer intuitive interfaces, real-time analytics, and seamless integration with existing IT infrastructure, making them accessible to non-technical users as well. This democratization of data analytics empowers a broader range of stakeholders to participate in data-driven processes, fostering a culture of collaboration and agility. Additionally, the increasing complexity of datasets, especially in sectors like healthcare, finance, and scientific research, necessitates sophisticated visualization solutions capable of handling multidimensional and hierarchical data structures.
The rapid adoption of cloud computing and the shift towards remote and hybrid work environments have also played a pivotal role in the expansion of the set visualization tools market. Cloud-based deployment models offer unparalleled scalability, flexibility, and cost-effectiveness, enabling organizations to access visualization capabilities without significant upfront investments in hardware or infrastructure. Furthermore, the emergence of mobile and web-based visualization platforms ensures that users can interact with data visualizations anytime, anywhere, thereby enhancing productivity and decision-making speed. As digital transformation initiatives gain momentum globally, the demand for advanced, user-friendly, and scalable set visualization tools is expected to remain strong.
From a regional perspective, North America currently dominates the set visualization tools market, accounting for the largest share in 2024, followed closely by Europe and the Asia Pacific. The presence of leading technology companies, a mature IT infrastructure, and high investment in analytics and business intelligence solutions contribute to North America's leadership position. However, the Asia Pacific region is witnessing the fastest growth, propelled by rapid digitalization, expanding enterprise IT budgets, and increasing awareness about the benefits of data visualization. As emerging economies in Latin America and the Middle East & Africa continue to invest in digital transformation, these regions are also expected to offer lucrative growth opportunities for market players over the forecast period.
The set visualization tools market by component is primarily segmented into software and services, each playing a crucial role in the overall ecosystem. The software segment holds the majority share, driven by the continuous evolution of visualization platforms
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
LLM Distribution Evaluation Dataset
This dataset contains 1000 synthetic graphs with questions and answers about statistical distributions, designed to evaluate large language models' ability to analyze data visualizations.
Dataset Description
Dataset Summary
This dataset contains diverse statistical visualizations (bar charts, line plots, scatter plots, histograms, area charts, and step plots) with associated questions about:
Normality testing Distribution… See the full description on the dataset page: https://huggingface.co/datasets/robvanvolt/llm-distribution-sample.
Facebook
TwitterExplore the world of data visualization with this Power BI dataset containing HR Analytics and Sales Analytics datasets. Gain insights, create impactful reports, and craft engaging dashboards using real-world data from HR and sales domains. Sharpen your Power BI skills and uncover valuable data-driven insights with this powerful dataset. Happy analyzing!
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Passive Acoustic Monitoring (PAM) is emerging as a solution for monitoring species and environmental change over large spatial and temporal scales. However, drawing rigorous conclusions based on acoustic recordings is challenging, as there is no consensus over which approaches, and indices are best suited for characterizing marine and terrestrial acoustic environments.
Here, we describe the application of multiple machine-learning techniques to the analysis of a large PAM dataset. We combine pre-trained acoustic classification models (VGGish, NOAA & Google Humpback Whale Detector), dimensionality reduction (UMAP), and balanced random forest algorithms to demonstrate how machine-learned acoustic features capture different aspects of the marine environment.
The UMAP dimensions derived from VGGish acoustic features exhibited good performance in separating marine mammal vocalizations according to species and locations. RF models trained on the acoustic features performed well for labelled sounds in the 8 kHz range, however, low and high-frequency sounds could not be classified using this approach.
The workflow presented here shows how acoustic feature extraction, visualization, and analysis allow for establishing a link between ecologically relevant information and PAM recordings at multiple scales.
The datasets and scripts provided in this repository allow replicating the results presented in the publication.
Methods
Data acquisition and preparation
We collected all records available in the Watkins Marine Mammal Database website listed under the “all cuts'' page. For each audio file in the WMD the associated metadata included a label for the sound sources present in the recording (biological, anthropogenic, and environmental), as well as information related to the location and date of recording. To minimize the presence of unwanted sounds in the samples, we only retained audio files with a single source listed in the metadata. We then labelled the selected audio clips according to taxonomic group (Odontocetae, Mysticetae), and species.
We limited the analysis to 12 marine mammal species by discarding data when a species: had less than 60 s of audio available, had a vocal repertoire extending beyond the resolution of the acoustic classification model (VGGish), or was recorded in a single country. To determine if a species was suited for analysis using VGGish, we inspected the Mel-spectrograms of 3-s audio samples and only retained species with vocalizations that could be captured in the Mel-spectrogram (Appendix S1). The vocalizations of species that produce very low frequency, or very high frequency were not captured by the Mel-spectrogram, thus we removed them from the analysis. To ensure that records included the vocalizations of multiple individuals for each species, we only considered species with records from two or more different countries. Lastly, to avoid overrepresentation of sperm whale vocalizations, we excluded 30,000 sperm whale recordings collected in the Dominican Republic. The resulting dataset consisted in 19,682 audio clips with a duration of 960 milliseconds each (0.96 s) (Table 1).
The Placentia Bay Database (PBD) includes recordings collected by Fisheries and Oceans Canada in Placentia Bay (Newfoundland, Canada), in 2019. The dataset consisted of two months of continuous recordings (1230 hours), starting on July 1st, 2019, and ending on August 31st 2029. The data was collected using an AMAR G4 hydrophone (sensitivity: -165.02 dB re 1V/µPa at 250 Hz) deployed at 64 m of depth. The hydrophone was set to operate following 15 min cycles, with the first 60 s sampled at 512 kHz, and the remaining 14 min sampled at 64 kHz. For the purpose of this study, we limited the analysis to the 64 kHz recordings.
Acoustic feature extraction
The audio files from the WMD and PBD databases were used as input for VGGish (Abu-El-Haija et al., 2016; Chung et al., 2018), a CNN developed and trained to perform general acoustic classification. VGGish was trained on the Youtube8M dataset, containing more than two million user-labelled audio-video files. Rather than focusing on the final output of the model (i.e., the assigned labels), here the model was used as a feature extractor (Sethi et al., 2020). VGGish converts audio input into a semantically meaningful vector consisting of 128 features. The model returns features at multiple resolution: ~1 s (960 ms); ~5 s (4800 ms); ~1 min (59’520 ms); ~5 min (299’520 ms). All of the visualizations and results pertaining to the WMD were prepared using the finest feature resolution of ~1 s. The visualizations and results pertaining to the PBD were prepared using the ~5 s features for the humpback whale detection example, and were then averaged to an interval of 30 min in order to match the temporal resolution of the environmental measures available for the area.
UMAP ordination and visualization
UMAP is a non-linear dimensionality reduction algorithm based on the concept of topological data analysis which, unlike other dimensionality reduction techniques (e.g., tSNE), preserves both the local and global structure of multivariate datasets (McInnes et al., 2018). To allow for data visualization and to reduce the 128 features to two dimensions for further analysis, we applied Uniform Manifold Approximation and Projection (UMAP) to both datasets and inspected the resulting plots.
The UMAP algorithm generates a low-dimensional representation of a multivariate dataset while maintaining the relationships between points in the global dataset structure (i.e., the 128 features extracted from VGGish). Each point in a UMAP plot in this paper represents an audio sample with duration of ~ 1 second (WMD dataset), ~ 5 seconds (PBD dataset, humpback whale detections), or 30 minutes (PBD dataset, environmental variables). Each point in the two-dimensional UMAP space also represents a vector of 128 VGGish features. The nearer two points are in the plot space, the nearer the two points are in the 128-dimensional space, and thus the distance between two points in UMAP reflects the degree of similarity between two audio samples in our datasets. Areas with a high density of samples in UMAP space should, therefore, contain sounds with similar characteristics, and such similarity should decrease with increasing point distance. Previous studies illustrated how VGGish and UMAP can be applied to the analysis of terrestrial acoustic datasets (Heath et al., 2021; Sethi et al., 2020). The visualizations and classification trials presented here illustrate how the two techniques (VGGish and UMAP) can be used together for marine ecoacoustics analysis. UMAP visualizations were prepared the umap-learn package for Python programming language (version 3.10). All UMAP visualizations presented in this study were generated using the algorithm’s default parameters.
Labelling sound sources
The labels for the WMD records (i.e., taxonomic group, species, location) were obtained from the database metadata.
For the PBD recordings, we obtained measures of wind speed, surface temperature, and current speed from (Fig 1) an oceanographic buy located in proximity of the recorder. We choose these three variables for their different contributions to background noise in marine environments. Wind speed contributes to underwater background noise at multiple frequencies, ranging 500 Hz to 20 kHz (Hildebrand et al., 2021). Sea surface temperature contributes to background noise at frequencies between 63 Hz and 125 Hz (Ainslie et al., 2021), while ocean currents contribute to ambient noise at frequencies below 50 Hz (Han et al., 2021) Prior to analysis, we categorized the environmental variables and assigned the categories as labels to the acoustic features (Table 2). Humpback whale vocalizations in the PBD recordings were processed using the humpback whale acoustic detector created by NOAA and Google (Allen et al., 2021), providing a model score for every ~5 s sample. This model was trained on a large dataset (14 years and 13 locations) using humpback whale recordings annotated by experts (Allen et al., 2021). The model returns scores ranging from 0 to 1 indicating the confidence in the predicted humpback whale presence. We used the results of this detection model to label the PBD samples according to presence of humpback whale vocalizations. To verify the model results, we inspected all audio files that contained a 5 s sample with a model score higher than 0.9 for the month of July. If the presence of a humpback whale was confirmed, we labelled the segment as a model detection. We labelled any additional humpback whale vocalization present in the inspected audio files as a visual detection, while we labelled other sources and background noise samples as absences. In total, we labelled 4.6 hours of recordings. We reserved the recordings collected in August to test the precision of the final predictive model.
Label prediction performance
We used Balanced Random Forest models (BRF) provided in the imbalanced-learn python package (Lemaître et al., 2017) to predict humpback whale presence and environmental conditions from the acoustic features generated by VGGish. We choose BRF as the algorithm as it is suited for datasets characterized by class imbalance. The BRF algorithm performs under sampling of the majority class prior to prediction, allowing to overcome class imbalance (Lemaître et al., 2017). For each model run, the PBD dataset was split into training (80%) and testing (20%) sets.
The training datasets were used to fine-tune the models though a nested k-fold cross validation approach with ten-folds in the outer loop, and five-folds in the inner loop. We selected nested cross validation as it allows optimizing model hyperparameters and performing model evaluation in a single step. We used the default parameters of the BRF algorithm, except for the ‘n_estimators’ hyperparameter, for which we tested
Facebook
Twitter
Facebook
TwitterThe global big data and business analytics (BDA) market was valued at ***** billion U.S. dollars in 2018 and is forecast to grow to ***** billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around ** billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate **** ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around **** billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reservoir and Lake Surface Area Timeseries (ReaLSAT) dataset provides an unprecedented reconstruction of surface area variations of lakes and reservoirs at a global scale using Earth Observation (EO) data and novel machine learning techniques. The dataset provides monthly scale surface area variations (1984 to 2020) of 681,137 water bodies below 50°N and sizes greater than 0.1 square kilometers.
The dataset contains the following files:
1) ReaLSAT.zip: A shapefile that contains the reference shape of waterbodies in the dataset.
2) monthly_timeseries.zip: contains one CSV file for each water body. The CSV file provides monthly surface area variation values. The CSV files are stored in a subfolder corresponding to each 10 degree by 10 degree cell. For example, monthly_timeseries_60_-50 folders contain CSV files of lakes that lie between 60 E and 70 E longitude, and 50S and 40 S.
3) monthly_shapes_.zip: contains a geotiff for each water body that lie within the 10 degree by 10 degree cell. Please refer to the visualization notebook on how to use these geotiffs.
4) evaluation_data.zip: contains the random subsets of the dataset used for evaluation. The zip file contains a README file that describes the evaluation data.
6) generate_realsat_timeseries.ipynb: a Google Colab notebook that provides the code to generate timerseries and surface extent maps for any waterbody.
Please refer to the following papers to learn more about the processing pipeline used to create ReaLSAT dataset:
[1] Khandelwal, Ankush, Anuj Karpatne, Praveen Ravirathinam, Rahul Ghosh, Zhihao Wei, Hilary A. Dugan, Paul C. Hanson, and Vipin Kumar. "ReaLSAT, a global dataset of reservoir and lake surface area variations." Scientific data 9, no. 1 (2022): 1-12.
[2] Khandelwal, Ankush. "ORBIT (Ordering Based Information Transfer): A Physics Guided Machine Learning Framework to Monitor the Dynamics of Water Bodies at a Global Scale." (2019).
Version Updates
Version 2.0:
extends the datasets to 2020.
provides geotiffs instead of shapefiles for individual lakes to reduce dataset size.
provides a notebook to visualize the updated dataset.
Version 1.4: added 1120 large lakes to the dataset and removed partial lakes that overlapped with these large lakes.
Version 1.3: fixed visualization related bug in generate_realsat_timeseries.ipynb
Version 1.2: added a Google Colab notebook that provides the code to generate timerseries and surface extent maps for any waterbody in ReaLSAT database.
Facebook
TwitterOverview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the
Facebook
TwitterHi Folks,
Let's understand the importance of Data Visualization.
Here below, we have four different data sets and they are paired in the sense of x and y.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2F4f6c696e3ad5e2c887b01a0bdd14b355%2Fdata_set.png?generation=1685190700223447&alt=media" alt="">
Next let's calculate some descriptive statistics such as mean, standard deviation and correlation of each variables.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2F14765ba12bdc18b8ff67cb6a9f2d7c7a%2Fstatistics.png?generation=1685192394142325&alt=media" alt="">
After examining the descriptive statistics the above four data sets have nearly identical or similar simple descriptive statistics.
However, when we graphically plot the datasets on scatter plot, we can see the difference that these 4 datasets looks very different.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2Fdbccf9dc638d3de28930b9f660e5f5a4%2Fgarph.png?generation=1685191588780934&alt=media" alt="">
Data 1 has a clear linear relationship, Data 2 has a curved relationship that is not linear, Data 3 has a tight linear relationship with one outlier and Data 4 has a linear relationship with one large outlier.
Such datasets are known as Anscombe's Quartet
Anscombe's quartet is a classic example of the importance of data visualization.
Anscombe's quartet is a set of four datasets that have nearly identical simple descriptive statistics, yet have very different distributions and appear very different when graphically represented. Each dataset consists of eleven (x,y) points.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12425689%2F2b964d437afe17db949c57988b5fba05%2Fanscombes_quartet.png?generation=1685192626504792&alt=media" alt="">
Anscombe's quartet illustrates the importance of plotting data before we analyze it. Descriptive statistics can be misleading, and they can't tell us everything we need to know about a dataset. Plotting the data on charts can help us to understand the shape of the distribution and to identify any outliers.