Geological map 'Standards', manuscript and published maps of Great Britain produced by the Survey on County Series (1:10560) and National Grid (1:10560 & 1:10000) Ordnance Survey base maps. Maps produced since the 1860's, current holdings over 41,000 maps, all now available internally as image files.
Scanned images of Geological map 'Standards', manuscript and published maps produced by the Survey on County Series (1:10560) and National Grid (1:10560 & 1:10000) Ordnance Survey base maps. Current holdings over 41,000 maps for Great Britain. The majority of maps were scanned in 2004, any new maps produced are scanned and added to the collection.
Index to BGS geological map 'Standards', manuscript and published maps for Great Britain produced by the Survey on County Series (1:10560) and National Grid (1:10560 & 1:10000) Ordnance Survey base maps. 'Standards' are the best interpretation of the geology at the time they were produced. The Oracle index was set up in 1988, current holdings are over 41,000 maps. There are entries for all registered maps, but not all fields are complete on all entries.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Manuscript geological maps produced by the Survey geologists or other recognised geologists on County Series (1:10560) and National Grid (1:10560 & 1:10000) Ordnance Survey base maps of Great Britain. A small number are produced at larger scale. Similar maps compiled from other sources. Maps produced since the 1850's, current holdings over 35,000 maps, all now scanned and available internally as image files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding the size and spatial distribution of material stocks is crucial for sustainable resource management and climate change mitigation. This study presents high-resolution maps of buildings and mobility infrastructure stocks for the United Kingdom (UK) and the Republic of Ireland (IRL) at 10 m, combining satellite-based Earth observations, OpenStreetMaps, and material intensities research. Stocks in the UK and IRL amount to 19.8 Gigatons or 279 tons/cap, predominantly aggregate, concrete and bricks, as well as various metals and timber. Building stocks per capita are surprisingly similar across medium to high population density, with only the lowest population densities having substantially larger per capita stocks. Infrastructure stocks per capita decrease with higher population density. Interestingly, for a given building stock within an area, infrastructure stocks are substantially larger in IRL than in the UK. These maps can provide useful insights for sustainable urban planning and advancing a circular economy.
This dataset features a detailed map of material stocks in the United Kingdom and the Republic of Ireland on a 10m grid based on high resolution Earth Observation data (Sentinel-1 + Sentinel-2), crowd-sourced geodata (OSM) and material intensity factors.
Spatial extent
This dataset covers the whole British Isles. Due to processing reasons, the dataset is internally structured into the Island of Ireland, and the Island of Great Britain.
Temporal extent
The map is representative for ca. 2018.
Data format
The data are organized by nations. Within each nation, data are split into 100km x 100km tiles (EQUI7 grid), and mosaics are provided.
Within each tile, images for area, volume, and mass at 10m spatial resolution are provided. Units are m², m³, and t, respectively. Each metric is split into buildings, other, rail and street (note: In the paper, other, rail, and street stocks are subsumed to mobility infrastructure). Each category is further split into subcategories (e.g. building types).
Additionally, a grand total of all stocks is provided at multiple spatial resolutions and units, i.e.
For each nation, mosaics of all above-described data are provided in GDAL VRT format, which can readily be opened in most Geographic Information Systems. File paths are relative, i.e. DO NOT change the file structure or file naming.
Additionally, the grand total mass per nation is tabulated for each island in mass_grand_total_t_10m2.tif.csv. County code and the ID in this table can be related via zones_name_pop.csv.
Material layers
Note that material-specific layers are not included in this repository because of upload limits. Only the totals are provided (i.e. the sum over all materials).
Further information
For further information, please see the publication.
Visit our website to learn more about our project MAT_STOCKS - Understanding the Role of Material Stock Patterns for the Transformation to a Sustainable Society.
Publication
D. Wiedenhofer, F. Schug, H. Gauch, M. Lanau, M. Drewniok, A. Baumgart, D. Virág, H. Watt, A. Cabrera Serrenho, D. Densley Tingley, H. Haberl, D. Frantz (2024): Mapping material stocks of buildings and mobility infrastructure in the United Kingdom and the Republic of Ireland. Resources, Conservation and Recycling 206, 107630. https://doi.org/10.1016/j.resconrec.2024.107630
Funding
This research was primarly funded by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (MAT_STOCKS, grant agreement No 741950).
Acknowledgments
We thank the European Space Agency and the European Commission for freely and openly sharing Sentinel imagery; Microsoft for Building Footprints; Geofabrik and all contributors for OpenStreetMap.This dataset was partly produced on EODC - we thank Clement Atzberger for supporting the generation of this dataset by sharing disc space on EODC, and Wolfgang Wagner for granting access to preprocessed Sentinel-1 data.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Photographic negatives of Geological map 'Standards', manuscript and published maps produced by the Survey on County Series (1:10560) and National Grid (1:10560 & 1:10000) Ordnance Survey base maps. Current holdings over 41,000 maps for Great Britain. The majority of maps were scanned in 2004, any new maps produced are scanned and added to the collection. This is essentially a back up collection for disaster recovery.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supplementary information files for article: 'The future scope of large-scale solar in the UK: site suitability and target analysis'.Abstract:This paper uses site suitability analysis to identify locations for solar farms in the UK to help meet climate change targets. A set of maps, each representing a given suitability criterion, is created with geographical information systems (GIS) software. These are combined to give a Boolean map of areas which are appropriate for large-scale solar farm installation. Several scenarios are investigated by varying the criteria, which include geographical (land use) factors, solar energy resource and electrical distribution network constraints. Some are dictated by the physical and technical requirements of large-scale solar construction, and some by government or distribution network operator (DNO) policy. It is found that any suitability map which does not heed planning permission and grid constraints will overstate potential solar farm area by up to 97%. This research finds sufficient suitable land to meet Future Energy Scenarios (UK National Grid outlines for the coming energy landscape).
Living England is a multi-year project which delivers a broad habitat map for the whole of England, created using satellite imagery, field data records and other geospatial data in a machine learning framework. The Living England habitat map shows the extent and distribution of broad habitats across England aligned to the UKBAP classification, providing a valuable insight into our natural capital assets and helping to inform land management decisions. Living England is a project within Natural England, funded by and supports the Defra Natural Capital and Ecosystem Assessment (NCEA) Programme and Environmental Land Management (ELM) Schemes to provide an openly available national map of broad habitats across England.This dataset includes very complex geometry with a large number of features so it has a default viewing distance set to 1:80,000 (City in the map viewer).Process Description:A number of data layers are used to develop a ground dataset of habitat reference data, which are then used to inform a machine-learning model and spatial analyses to generate a map of the likely locations and distributions of habitats across England. The main source data layers underpinning the spatial framework and models are Sentinel-2 and Sentinel-1 satellite data from the ESA Copernicus programme, Lidar from the EA's national Lidar Programme and collected data through the project's national survey programme. Additional datasets informing the approach as detailed below and outlined in the accompanying technical user guide.Datasets used:OS MasterMap® Topography Layer; Geology aka BGS Bedrock Mapping 1:50k; Long Term Monitoring Network; Uplands Inventory; Coastal Dune Geomatics Mapping Ground Truthing; Crop Map of England (RPA) CROME; Lowland Heathland Survey; National Grassland Survey; National Plant Monitoring Scheme; NE field Unit Surveys; Northumberland Border Mires Survey; Sentinel-2 multispectral imagery; Sentinel-1 backscatter imagery; Sentinel-1 single look complex (SLC) imagery; National forest inventory (NFI); Cranfield NATMAP; Agri-Environment HLS Monitoring; Living England desktop validation; Priority Habitat Inventory; Space2 Eye Lens: Ainsdale NNR, State of the Bog Bowland Survey, State of the Bog Dark Peak Condition Survey, State of the Bog Manchester Metropolitan University (MMU) Mountain Hare Habitat Survey Dark Peak, State of the Bog; Moors for the Future Dark Peak Survey; West Pennines Designation NVC Survey; Wetland Annex 1 inventory; Soils-BGS Soil Parent Material; Met Office HadUK gridded climate product; Saltmarsh Extent and Zonation; EA LiDAR DSM & DTM; New Forest Mires Wetland Survey; New Forest Mires Wetland Survey; West Cumbria Mires Survey; England Peat Map Vegetation Surveys; NE protected sites monitoring; ERA5; OS Open Built-up Areas; OS Boundaries dataset; EA IHM (Integrated height model) DTM; OS VectorMap District; EA Coastal Flood Boundary: Extreme Sea Levels; AIMS Spatial Sea Defences; LIDAR Sand Dunes 2022; EA Coastal saltmarsh species surveys; Aerial Photography GB (APGB); NASA SRT (Shuttle Radar Topography Mission) M30; Provisional Agricultural Land Classification; Renewable Energy Planning Database (REPD); Open Street Map 2024.Attribute descriptions: Column Heading Full Name Format Description
SegID SegID Character (100) Unique Living England segment identifier. Format is LEZZZZ_BGZXX_YYYYYYY where Z = release year (2223 for this version), X = BGZ and Y = Unique 7-digit number
Prmry_H Primary_Habitat Date Primary Living England Habitat
Relblty
Reliability
Character (12)
Reliability Metric Score
Mdl_Hbs Model_Habs Interger List of likely habitats output by the Random Forest model.
Mdl_Prb Model_Probs Double (6,2) List of probabilities for habitats listed in ‘Model_Habs’, calculated by the Random Forest model.
Mixd_Sg Mixed_Segment Character (50) Indication of the likelihood a segment contains a mixture of dominant habitats. Either Unlikely or Probable.
Source Source
Description of how the habitat classification was derived. Options are: Random Forest; Vector OSMM Urban; Vector Classified OS Water; Vector EA saltmarsh; LE saltmarsh & QA; Vector RPA Crome, ALC grades 1-4; Vector LE Bare Ground Analysis; LE QA Adjusted
SorcRsn Source_Reason
Reasoning for habitat class adjustment if ‘Source’ equals ‘LE QA Adjusted’
Shap_Ar Shape_Area
Segment area (m2) Full metadata can be viewed on data.gov.uk.
https://eidc.ceh.ac.uk/licences/lcm-raster/plainhttps://eidc.ceh.ac.uk/licences/lcm-raster/plain
This dataset consists of the 25m raster version of the Land Cover Map 2015 (LCM2015) for Northern Ireland. This is the most detailed of the LCM2015 raster products both thematically and spatially, and it is used to derive the 1km products. The 25m raster product consists of two bands: Band 1 - raster representation of the majority (dominant) class per polygon for 21 target habitat classes; Band 2 - mean per polygon probability as reported by the Random Forest classifier (see supporting information). The 21 target classes are based on the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompass the entire range of UK habitats. This dataset is derived from the vector version of the Land Cover Map, which contains individual parcels of land cover and is the highest available spatial resolution. LCM2015 is a land cover map of the UK which was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. LCM2015 consists of a range of raster and vector products and users should familiarise themselves with the full range (see related records, the CEH web site and the LCM2015 Dataset documentation) to select the product most suited to their needs. LCM2015 was produced at the Centre for Ecology & Hydrology by classifying satellite images from 2014 and 2015 into 21 Broad Habitat-based classes. It is one of a series of land cover maps, produced by UKCEH since 1990. They include versions in 1990, 2000, 2007, 2015, 2017, 2018 and 2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 1 row and is filtered where the books is The large scale county maps of the British Isles 1596-1850 : a union list. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
The BGS collection of 1:10 560 / 1:10 000 National Grid Series geological maps. These maps are based on the Ordnance Survey National Grid series of maps, which are defined by the 10 km intervals of the larger 100 km square identified by a specific two-letter code. Each map is thus denoted by a unique reference, e.g. SP 29 NW. SP=100 km square; 29=10 km square; NW=5 km square. Since field mapping is generally undertaken at the scale of 1:10 000 (or equivalent), these maps are the largest-scale main series of geological maps that BGS holds. A small number of remote areas were mapped at 1:25 000 scale, the subsequent maps are also at 1:25 000 scale and are included in this series. The equivalent to the National Grid Series prior to the 1960s is the County Series (at 1:10 560 scale). In the 1960s, this series started to be replaced by 6 inches to 1 mile (1:10 560 scale) National Grid sheets based on the four quadrants (NW, NE, SW, SE) of a 10 km Ordnance Survey National Grid square. Areal coverage provided by the National Grid series of large-scale maps is limited in extent and the preceding County series of six-inch maps can still be the most up to date map available for some areas. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are, for the most part, hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
This layer of the map based index (GeoIndex) shows the location of available 1:10000 or 1:10560 series paper geological maps. Since the 1960s the standard large scale map for recording geological information has been the Ordnance Survey (OS) quarter sheet, covering a 5km by 5km area. The maps themselves are supplied in different formats depending on their age and the method of compliation or reproduction used. Only the latest and most up-to-date version is listed.
This data results from the NRSC's ongoing 1:25000 UK Aerial Photography Programme; a project designed to maintain an up to date aerial coverage of the United Kingdom, covering the complete area at least every 5 years.
The Orthoview product has been generated from vertical aerial photographs. The photographs have been orthorectified (to correct for distortion towards their edges) then mosaiced to provide a seamless dataset for the UK at a 0.5 metre resolution. This allows imagery for any area of interest to be generated without issues associated with scenes falling across multiple photographs.
In addition to its prime application in photogrammetric mapping (from updating and contouring existing maps to preparing large scale engineering plans), the data is used for environmental studies, general planning, land use and land capability, soils, pollution, forestry, mining and quarrying, housing and leisure development, agriculture, geology, water, transport and civil engineering, boundary disputes, public enquiries, etc.
The data is stored in digital form and can be supplied on either Exabyte, CD-ROM or CCT. Various hard copy forms can also be generated, including posters and photographic positives/negatives. Price lists and further information are available from the National Remote Sensing Centre (NRSC).
Note: All photography is flown to RICS Specification for Aerial Photography Issue III, see references.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Statutory Main Rivers Map is a spatial (polyline) dataset that defines statutory watercourses in England designated as Main Rivers by the Environment Agency.
Watercourses designated as ‘main river’ are generally the larger arterial watercourses. The Environment Agency has permissive powers, but not a duty, to carry out maintenance, improvement or construction work on designated main rivers.
All other open water courses in England are determined by statute as an ‘ordinary watercourse’. On these watercourses the Lead Local flood Authority or, if within an Internal Drainage District, the Internal Drainage Board have similar permissive powers to maintain and improve.
This dataset comprises scanned images of the manuscript geological maps produced by the Survey geologists or other recognised geologists on County Series (1:10560) and National Grid (1:10560 and 1:10000) Ordnance Survey base maps. The collection also includes similar maps compiled from other sources. Currently the dataset contains over 35,000 scanned images. Original maps date from the 1860s, and cover surveys in Great Britain, scanning started in 2003.
https://vocab.nerc.ac.uk/collection/L08/current/LI/https://vocab.nerc.ac.uk/collection/L08/current/LI/
LIDAR is an airborne terrain mapping system, which uses a laser to measure the distance between the aircraft and the ground. This technique results in the production of cost effective terrain maps with a height accuracy of 10 to 15cm. Typically with spot heights between 1 to 4 metres spatially on the land surface. CASI is used to provide information on the colour of the environment. It is designed to provide a flexible system which is easy to transport and straightforward to install and operate in small aircraft. It can be used for detailed studies of the spectral characteristics of ground or water targets, which are imaged instantaneously in a large number of spectral wavebands (up to 288), covering the visible and near infra-red regions of the spectrum, between 430 nm and 870 nm. Spatial resolution can be varied from one to ten metres, depending on the flying altitude and lens configuration. New LIDAR and CASI data sets are being gathered from parts of England and Wales all the time. For details on coverage and extent contact the National Centre.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
For much of the Geological Survey's existence, the County Series of maps were the standard large-scale maps on which geological mapping was undertaken. These maps are based on the Ordnance Survey County (or six-inch to the mile) series of maps. These maps were cut up to be used in the field to record geological observations, and on return to the office, the geology was transferred to a complete County Series map, which after approval was known as a 'standard' (England / Wales) or 'clean copy' (Scotland). This dataset contains the 'standard' or 'clean copy' County Series maps held by BGS. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
https://eidc.ceh.ac.uk/licences/unified-peat-map-of-wales/plainhttps://eidc.ceh.ac.uk/licences/unified-peat-map-of-wales/plain
An updated map of peat extent for Wales has been developed by the UK Centre for Ecology and Hydrology, with support from the British Geological Survey and Natural Resources Wales in support of the Glastir Monitoring & Evaluation Programme, commissioned by the Welsh Government. This map represents a considerable advance on previous attempts to map the deep peat resource of Wales and yields a significantly larger estimate than that based on the Soil Survey of England and Wales alone. This new map highlights the wide distribution of peatlands across much of Wales, with large areas of upland blanket bog in North east and North-central Wales (Migneint, Berwyn) and central Wales (Cambrian Mountains), as well as smaller areas of upland peat in and around the Brecon Beacons National Park. The new unified map also provides a much more detailed picture of the distribution of deep peat in the lowlands, many areas of which retain significant biodiversity interest. The Glastir Monitoring & Evaluation Programme was set up by the Welsh Government in 2013 to monitor the effects of the Glastir agri-environment scheme on the environment and ran from 2013 to 2016.
This dataset summarises information from WWT's wetland potential mapping at the WFD waterbody catchment (catchment) level. Data from multiple layers are pulled together to allow visualisation of the relative potential for wetlands across catchments of Great Britain. Specifically, it includes data from the WWT 'wetlands for water quality', 'wetlands for carbon storage', 'wetlands for flood resilience' and 'wetlands for urban wellbeing' indicative wetland potential maps, and from the Combined 'multi-benefit' wetland potential map, which amalgamates these four layers. It is recommended that users view these layers alongside the layers created from this dataset.The absence of mapped wetland potential in a catchment does not necessarily mean there is no potential to create wetlands, nor a lack of issues that wetland solutions could be used to address. Wetland potential was only mapped within 'demand' areas where there is a greater need for wetland solutions.This dataset includes the following information:UK Water Framework Directive (WFD) status and waterbody identifiers (for waterbodies in England, Wales and Scotland).Summary information on the total indicative wetland potential (from the four wetland potential maps) per catchment, including the total area (in hectares) and percentage cover of wetland potential across the catchment area.Total area and percentage cover of 'wetlands for flood resilience' and 'wetlands for water quality' potential per catchment. Number of potential 'wetlands for flood resilience' and 'wetlands for water quality' parcels per catchment (figures may be arbitrary due to intersects used to summarise wetland potential).Priority 'demand' catchments for potential 'wetlands for water quality'. Priority 'demand' catchments for potential 'wetlands for flood resilience'. Percentage change in household projections for 2018-2041, per catchment (averaged across Local Authorities and Higher Administrative areas (England & Wales) and Council areas (Scotland)).Average number of new builds (averaged across Local Authorities) built in 2021-2022, per catchment.WWT are calling for the creation of 100,000 hectares of new and restored wetlands in the UK by 2050. This dataset is a part of WWT’s Roadmap to 100,000 hectares project, which aims to assess both the spatial and economic potential for large-scale wetland restoration targeted at tackling some of the key issues faced by UK society. The work has a particular focus on four themes where wetlands can provide solutions, namely (1) wetlands for carbon storage (specifically saltmarsh for blue carbon), (2) wetlands for urban wellbeing, (3) wetlands for flood resilience, and (4) wetlands for water quality. Wetland potential for water quality, carbon storage, flood resilience and urban wellbeing has been mapped.Full methodology can be found here. Attributes:
Heading
Description
wb_id
ID number of the WFD waterbody
wb_name
Name of the WFD waterbody
country
UK country in which the WFD waterbody is located
WFD_class
WFD status classification of the waterbody
ovl_p_ha
Total area of wetland potential (from all four WWT wetland potential layers) in the catchment, in hectares
percnt_ovl
Total area of wetland potential (from all four WWT wetland potential layers) in the waterbody, as a percentage of the catchment area
count_ovl
Number of wetland potential parcels located in the catchment (arbitrary value)
nfm_p_ha
Total area of 'wetlands for flood resilience' potential in the catchment, in hectares
percnt_nfm
Total area of 'wetlands for flood resilience' potential in the catchment, as a percentage of the catchment area
count_nfm
Number of 'wetlands for flood resilience' parcels located in the catchment
wq_p_ha
Total area of 'wetlands for water quality' potential in the catchment
percnt_wq
Total area of 'wetlands for water quality' potential in the catchment, as a percentage of the catchment area
count_wq
Number 'wetlands for water quality' parcels located in the catchment
priorit_wq
Priority 'demand' catchments for 'wetlands for water quality' (1 = 'demand' catchment')
prior_nfm
Priority 'demand' catchments for 'wetlands for flood resilience' (1 = 'demand' catchment')
Av_percent
Percentage change in household predictions from 2018 - 2041 averaged across Local Authorities within the catchment
Av_nb_2122
Number of new builds (2021-22) per catchment (average across Local Authorities within the catchment)
This is a thin-sheet model of the regional geoelectric field covering the UK and Ireland, which is a combination of the response of the ground conductivity in a region with the spatial and temporal measurements of the rate of change of the horizontal components of the magnetic field. Output from the BGS Space Weather Impact on Ground-based Systems (SWIGS)
Geological map 'Standards', manuscript and published maps of Great Britain produced by the Survey on County Series (1:10560) and National Grid (1:10560 & 1:10000) Ordnance Survey base maps. Maps produced since the 1860's, current holdings over 41,000 maps, all now available internally as image files.