Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Stone Gap population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Big Stone Gap. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 3,112 (59.93% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Stone Gap Population by Age. You can refer the same here
There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Water population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Big Water. The dataset can be utilized to understand the population distribution of Big Water by age. For example, using this dataset, we can identify the largest age group in Big Water.
Key observations
The largest age group in Big Water, UT was for the group of age 65 to 69 years years with a population of 74 (14.23%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Big Water, UT was the 80 to 84 years years with a population of 1 (0.19%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Water Population by Age. You can refer the same here
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Worldwide, the male population is slightly higher than the female population, although this varies by country. As of 2023, Hong Kong has the highest share of women worldwide with almost ** percent. Moldova followed behind with ** percent. Among the countries with the largest share of women in the total population, several were former Soviet-states or were located in Eastern Europe. By contrast, Qatar, the United Arab Emirates, and Oman had some of the highest proportions of men in their populations.
In 2023, the number of Hispanic and Latino residents in California had surpassed the number of White residents, with about ***** million Hispanics compared to ***** million White residents. California’s residents California has always held a special place in the American imagination as a place where people can start a new life and increase their personal fortunes. Perhaps due partly to this, California is the most populous state in the United States, with over ** million residents, which is a significant increase from the number of residents in 1960. California is also the U.S. state with the largest population of foreign born residents. The Californian economy The Californian economy is particularly strong and continually contributes a significant amount to the gross domestic product (GDP) of the United States. Its per-capita GDP is also high, which indicates a high standard of living for its residents. Additionally, the median household income in California has more than doubled from 1990 levels.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hong Kong HK: Population in Largest City: as % of Urban Population data was reported at 99.637 % in 2017. This records an increase from the previous number of 99.540 % for 2016. Hong Kong HK: Population in Largest City: as % of Urban Population data is updated yearly, averaging 99.382 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 100.000 % in 2010 and a record low of 94.548 % in 1974. Hong Kong HK: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Hong Kong – Table HK.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Lake population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Big Lake. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 44 (65.67% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Lake Population by Age. You can refer the same here
The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States - Population Growth for High Income Countries was 0.53329 % Chg. at Annual Rate in January of 2023, according to the United States Federal Reserve. Historically, United States - Population Growth for High Income Countries reached a record high of 1.45087 in January of 1960 and a record low of -0.17394 in January of 2021. Trading Economics provides the current actual value, an historical data chart and related indicators for United States - Population Growth for High Income Countries - last updated from the United States Federal Reserve on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Botswana: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49).
This 2011 Population Census dataset contains statistics relevant to demographic, household, educational, economic and housing characteristics of the Hong Kong population residing in the 1620 Large Street Block Groups in 2011. The dataset also contains the boundaries of individual Large Street Block Groups. Since 1961, a population census has been conducted in Hong Kong every 10 years and a by-census in the middle of the intercensal period. The 2011 Population Census, which was conducted in June to August 2011, provides benchmark statistics on the socio-economic characteristics of the Hong Kong population vital to the planning and policy formulation of the government. This dataset will be incorporated into Population Distribution Framework Spatial Data Theme.
Attribution 2.5 (CC BY 2.5)https://creativecommons.org/licenses/by/2.5/
License information was derived automatically
The purpose of this experiment was to determine whether females may be a limited resource within a population of Uca capricornis. The experiment was part of a larger study looking at the …Show full descriptionThe purpose of this experiment was to determine whether females may be a limited resource within a population of Uca capricornis. The experiment was part of a larger study looking at the relationship between neighbouring males and females in this species. Experiments were conducted in the East Point Reserve, Darwin. Fieldwork was conducted yearly in 18 plots (4mx4m) from November-January in 2002-2006. All individuals within the plots were caught and carapace widths measured. This allowed the sex ratio in relation to size to be determined. The location of burrows were also recorded to determine whether the males and females were distributed independently of each other. The distance to, and sex of, the nearest resident for each individual was also measured to compare mean distances between male-female neighbours and between male-male neighbours. Results indicate that an average of 7 crabs per square metre were active on the surface at any time. The sex ratio was strongly male biased, with only 30% of crabs being female. The sex ratio also changed with size; females were significantly rarer in large size classes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The world's most accurate population datasets. Seven maps/datasets for the distribution of various populations in Burkina Faso: (1) Overall population density (2) Women (3) Men (4) Children (ages 0-5) (5) Youth (ages 15-24) (6) Elderly (ages 60+) (7) Women of reproductive age (ages 15-49). Methodology These high-resolution maps are created using machine learning techniques to identify buildings from commercially available satellite images. This is then overlayed with general population estimates based on publicly available census data and other population statistics at Columbia University. The resulting maps are the most detailed and actionable tools available for aid and research organizations. For more information about the methodology used to create our high resolution population density maps and the demographic distributions, click here. For information about how to use HDX to access these datasets, please visit: https://dataforgood.fb.com/docs/high-resolution-population-density-maps-demographic-estimates-documentation/ Adjustments to match the census population with the UN estimates are applied at the national level. The UN estimate for a given country (or state/territory) is divided by the total census estimate of population for the given country. The resulting adjustment factor is multiplied by each administrative unit census value for the target year. This preserves the relative population totals across administrative units while matching the UN total. More information can be found here
This 2006 Population By-census dataset contains statistics relevant to demographic, household, educational, economic, housing and internal migration characteristics of the Hong Kong population residing in the 147 Large Tertiary Planning Unit Groups in 2006. The dataset also contains the boundaries of individual Large Tertiary Planning Unit Groups. Since 1961, a population census has been conducted in Hong Kong every 10 years and a by-census in the middle of the intercensal period. The 2006 Population By-census, which was conducted in July to August 2006, provides benchmark statistics on the socio-economic characteristics of the Hong Kong population vital to the planning and policy formulation of the government. This dataset will be incorporated into Population Distribution Framework Spatial Data Theme.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Cabin population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Big Cabin. The dataset can be utilized to understand the population distribution of Big Cabin by age. For example, using this dataset, we can identify the largest age group in Big Cabin.
Key observations
The largest age group in Big Cabin, OK was for the group of age 20 to 24 years years with a population of 20 (11.36%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in Big Cabin, OK was the 85 years and over years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Cabin Population by Age. You can refer the same here
National
18 of the 37 states in Nigeria were selected using procedures described in the methodology report
Sample survey data [ssd]
A. Sampling Frame The sampling frame was the 2006 National Population Census. For administrative purposes, Nigeria has 36 states and the Federal Capital Territory. These states are grouped into six geopolitical zones - the North Central, North East, North West, South East, South South and South West. The states in turn are divided into 776 Local Governments. The demographic and political characteristics of the states vary considerably. For example, the number of component local government areas in the states ranges from 8 in Bayelsa State (in the South South) to 44 in Kano State (in the North West). Likewise state populations vary widely from 1.41 million in the Abuja Federal Capital Territory to 9.38 million in Kano State. The National Bureau of Statistics splits the country further into 23, 070 enumeration areas (EAs). While the enumeration areas are equally distributed across the local government areas, with each local government area having 30 enumeration areas, the differences in the number of local government areas across states implies that there are also huge differences in the number of enumeration areas across states. Appendix table 1 summarizes the population according to the 2006 population census (in absolute and proportionate numbers), number of local government areas, and number of enumeration areas in each state .
Given the above, a stratified random sampling technique was thought to be needed to select areas according to population and the expected prevalence of migrants. The National Bureau of Statistics (NBS) provided a randomly selected set of enumeration areas and households spread across all states in the Federation from the 2006 sampling frame. Every state in Nigeria has three senatorial zones (often referred to as North, Central and South or East, Central and West). The NBS sample enumeration areas were distributed such that within each state, local government areas from each senatorial zones were included in the sample, with Local Governments in each state nearly evenly distributed between rural and urban areas. In all, a total of 3188 enumeration areas were selected. These enumeration areas were unevenly spread across States; some states in the North West (Kano, Katsina, and Jigawa), and a few in the South South (Akwa Ibom and Delta) had over 100 enumeration areas selected while others such as Imo and Abia in the South East, and Borno, Gombe and Taraba in the North East, had as few as 20 enumeration areas selected. This selection partially reflected the relative population distribution and number of Local Government Areas in the component states. Annex Table B shows details of the states and geopolitical regions, their shares in population of the country, the number of Local Government Areas and enumeration areas in each state and the number of enumeration areas given in the NBS list that formed the frame for the study.
B. The Sample for the Migration Survey
a. Sample Selection of States, Local Governments and Enumeration Areas Originally, the intention was to have proportionate allocation across all states, using the population of each state in the 2006 Census to select the number of households to be included in the sample. But it was later recognized that this would not yield enough migrant households, particularly those with international migrants, especially as the total number of households that could likely be covered in the sample to was limited to 2000. Consequently, a disproportionate sampling approach was adopted, with the aim of oversampling areas of the country with more migrants. According to Bilsborrow (2006), this approach becomes necessary because migrants are rare populations for which a distinct disproportionate sampling procedure is needed to ensure they are adequately captured. Given the relative rareness of households with out-migrants to international destinations within the 10 year reference period (selected by the World Bank for all countries) prior to the planned survey, sampling methods appropriate for sampling rare elements were desirable, specifically, stratified sampling with two-phase sampling at the last stage.
Establishing the strata would require that there be previous work, say from the most recent Census, to determine migration incidence among the states. However, the needed census data could not be obtained from either the National Bureau of Statistics or the National Population Commission. Therefore, the stratification procedure had to rely on available literature, particularly Hernandez-Coss and Bun (2007), Agu (2009) and a few other recent, smaller studies on migration and remittances in Nigeria. Information from this literature was supplemented by expert judgement about migration from team members who had worked on economic surveys in Nigeria in the past. Information from the literature and the expert assessment indicated that migration from households is considerably higher in the South than in the North. Following this understanding, the states were formed into two strata- those with high and those with low incidence of migration. In all, 18 States (16 in the South and 2 in the North) were put into the high migration incidence stratum while 19 states (18 in the North and 1 in the South) were classified l into the low migration incidence stratum (column C of Appendix Table 1).
The Aggregate population of the 18 states in the high migration incidence stratum was 67.04 million, spread across 10,850 Enumeration areas. Thus, the mean population of an EA in the high migration stratum was 6179. In turn, the aggregate population of the 19 states in the low migration incidence stratum was 72.95 million spread across 12,110 EAs yielding a mean EA population of 6024. These numbers were close enough to assume the mean population of EAs was essentially the same. To oversample states in the high stratum, it was decided to select twice as high a proportion of the states as in the low stratum. To further concentrate the sample and make field work more efficient in being oriented to EAs more likely to have international migrants, we decided to select randomly twice as many LGAs in each state in the high stratum states as in the low stratum states.
Thus, 12 states were randomly selected with probabilities of selection proportionate to the population size of each state (so states with larger populations were accordingly more likely to fall in the sample) from the high stratum states. Then two LGAs were randomly selected from each sample state and 2 EAs per sample LGA (one urban, one rural) to yield a total of 12 x 2 x 2 or 48 EAs in the high stratum states. For the low stratum, 6 states were randomly selected. From each of these, 1 LGA was randomly picked and 2 EAs were selected per sample LGA to give a total of 6 x 1 x 2 or 12 EAs in the low stratum. This yielded a total of 60 EAs for both strata. Given the expected range of 2000 households to be sampled, approximately 67 households were to be sampled from each local government area or 34 households from each enumeration area.
So far, the discussion has assumed two groups of households - migrant and non-migrant households. However, the study was interested in not just lumping all migrants together, but rather in classifying migrants according to whether their destination was within or outside the country. Migrant households were thus subdivided into those with former household members who were international migrants and those with former household members who were internal migrants. Three strata of households were therefore required, namely:
The selection of states to be included in the sample from both strata was based on Probabilities of Selection Proportional to (Estimated) Size or PPES. The population in each stratum was cumulated and systematic sampling was performed, with an interval of 12.16 million for the low stratum (72.95 million divided by 6 States), and 5.59 million for the high stratum (67.04 million divided by 12 States). This yields approximately double the rate of sampling in the high migration stratum, as earlier explained. Using a random start between 0 and 12.16, the following states were sampled in the low stratum: Niger, Bauchi, Yobe, Kano, Katsina, and Zamfara. In the high stratum, states sampled were Abia, Ebonyi, Imo, Akwa Ibom, Delta, Edo, Rivers, Lagos, Ondo, Osun and Oyo. Given its large population size, Lagos fell into the sample twice. The final sample, with LGAs and EAs moving from North to South (i.e. from the low to the high stratum states) is presented in Table 1 below.
The sample was concentrated in the South since that is where it was expected that more households have international migrants. It was expected that the survey would still also be reasonably representative of the whole country and of both internal migrant and non-migrant households through weighting the data. To this effect, field teams were asked to keep careful track at all stages of the numbers of people and households listed compared to the number in the
This statistic shows the twenty countries with the projected largest urban populations worldwide in 2050. Forecasts estimate that the urban population of China will be **** billion people in 2050.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Niger NE: Population in Largest City: as % of Urban Population data was reported at 28.102 % in 2017. This records a decrease from the previous number of 28.626 % for 2016. Niger NE: Population in Largest City: as % of Urban Population data is updated yearly, averaging 34.017 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 37.980 % in 2001 and a record low of 28.102 % in 2017. Niger NE: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Niger – Table NE.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Portugal PT: Population in Largest City: as % of Urban Population data was reported at 43.765 % in 2017. This records a decrease from the previous number of 43.794 % for 2016. Portugal PT: Population in Largest City: as % of Urban Population data is updated yearly, averaging 50.734 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 58.789 % in 1981 and a record low of 43.732 % in 2012. Portugal PT: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Portugal – Table PT.World Bank: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Big Stone Gap population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of Big Stone Gap. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.
Key observations
The largest age group was 18 to 64 years with a poulation of 3,112 (59.93% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Age cohorts:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Big Stone Gap Population by Age. You can refer the same here