Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
3DHD CityScenes is the most comprehensive, large-scale high-definition (HD) map dataset to date, annotated in the three spatial dimensions of globally referenced, high-density LiDAR point clouds collected in urban domains. Our HD map covers 127 km of road sections of the inner city of Hamburg, Germany including 467 km of individual lanes. In total, our map comprises 266,762 individual items.
Our corresponding paper (published at ITSC 2022) is available here.
Further, we have applied 3DHD CityScenes to map deviation detection here.
Moreover, we release code to facilitate the application of our dataset and the reproducibility of our research. Specifically, our 3DHD_DevKit comprises:
The DevKit is available here:
https://github.com/volkswagen/3DHD_devkit.
The dataset and DevKit have been created by Christopher Plachetka as project lead during his PhD period at Volkswagen Group, Germany.
When using our dataset, you are welcome to cite:
@INPROCEEDINGS{9921866,
author={Plachetka, Christopher and Sertolli, Benjamin and Fricke, Jenny and Klingner, Marvin and
Fingscheidt, Tim},
booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)},
title={3DHD CityScenes: High-Definition Maps in High-Density Point Clouds},
year={2022},
pages={627-634}}
Acknowledgements
We thank the following interns for their exceptional contributions to our work.
The European large-scale project Hi-Drive (www.Hi-Drive.eu) supports the publication of 3DHD CityScenes and encourages the general publication of information and databases facilitating the development of automated driving technologies.
The Dataset
After downloading, the 3DHD_CityScenes folder provides five subdirectories, which are explained briefly in the following.
1. Dataset
This directory contains the training, validation, and test set definition (train.json, val.json, test.json) used in our publications. Respective files contain samples that define a geolocation and the orientation of the ego vehicle in global coordinates on the map.
During dataset generation (done by our DevKit), samples are used to take crops from the larger point cloud. Also, map elements in reach of a sample are collected. Both modalities can then be used, e.g., as input to a neural network such as our 3DHDNet.
To read any JSON-encoded data provided by 3DHD CityScenes in Python, you can use the following code snipped as an example.
import json
json_path = r"E:\3DHD_CityScenes\Dataset\train.json"
with open(json_path) as jf:
data = json.load(jf)
print(data)
2. HD_Map
Map items are stored as lists of items in JSON format. In particular, we provide:
3. HD_Map_MetaData
Our high-density point cloud used as basis for annotating the HD map is split in 648 tiles. This directory contains the geolocation for each tile as polygon on the map. You can view the respective tile definition using QGIS. Alternatively, we also provide respective polygons as lists of UTM coordinates in JSON.
Files with the ending .dbf, .prj, .qpj, .shp, and .shx belong to the tile definition as “shape file” (commonly used in geodesy) that can be viewed using QGIS. The JSON file contains the same information provided in a different format used in our Python API.
4. HD_PointCloud_Tiles
The high-density point cloud tiles are provided in global UTM32N coordinates and are encoded in a proprietary binary format. The first 4 bytes (integer) encode the number of points contained in that file. Subsequently, all point cloud values are provided as arrays. First all x-values, then all y-values, and so on. Specifically, the arrays are encoded as follows.
After reading, respective values have to be unnormalized. As an example, you can use the following code snipped to read the point cloud data. For visualization, you can use the pptk package, for instance.
import numpy as np
import pptk
file_path = r"E:\3DHD_CityScenes\HD_PointCloud_Tiles\HH_001.bin"
pc_dict = {}
key_list = ['x', 'y', 'z', 'intensity', 'is_ground']
type_list = ['
5. Trajectories
We provide 15 real-world trajectories recorded during a measurement campaign covering the whole HD map. Trajectory samples are provided approx. with 30 Hz and are encoded in JSON.
These trajectories were used to provide the samples in train.json, val.json. and test.json with realistic geolocations and orientations of the ego vehicle.
- OP1 – OP5 cover the majority of the map with 5 trajectories.
- RH1 – RH10 cover the majority of the map with 10 trajectories.
Note that OP5 is split into three separate parts, a-c. RH9 is split into two parts, a-b. Moreover, OP4 mostly equals OP1 (thus, we speak of 14 trajectories in our paper). For completeness, however, we provide all recorded trajectories here.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Sierra Water Workgroup has created these data layers to support the Tahoe-Sierra IRWM Project Data Management Application. Data used to create these layers were largely sourced from the CA DWR, USGS, National Hydrography Database, The Nature Conservancy, USBR, USDA Forest Service, USDA, USFS, CalEPA, and the Sierra Nevada DDS. Data layers were created by Kate Gladstein of the Sierra Water Workgroup.
Jurisdictional Dams: Sierra Water Workgroup has modified this layer of Jurisdictional Dams within the Tahoe Sierra Integrated Regional Water Management Area. Data was provided by the CA Department of Water Resources. Additional Information.
Nonearthen Shores: Sierra Water Workgroup has modified this layer displaying "nonearthen shores" within the Tahoe Sierra Integrated Regional Water Management Area. Data was provided by the National Hydrography Database, a collaborative entity between DWR and the US Bureau of Reclamation. From NHD: "The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee." Original metadata.
Wetlands: The Sierra Water Workgroup modified this layer displaying wetland areas within the Tahoe Sierra Integrated Regional Water Management Boundaries. This data set represents the extent, approximate location and type of wetlands and deepwater habitats in the conterminous United States. These data delineate the areal extent of wetlands and surface waters as defined by Cowardin et al. (1979). Certain wetland habitats are excluded from the National mapping program because of the limitations of aerial imagery as the primary data source used to detect wetlands. These habitats include seagrasses or submerged aquatic vegetation that are found in the intertidal and subtidal zones of estuaries and near shore coastal waters. Some deepwater reef communities (coral or tuberficid worm reefs) have also been excluded from the inventory. These habitats, because of their depth, go undetected by aerial imagery. By policy, the Service also excludes certain types of "farmed wetlands" as may be defined by the Food Security Act or that do not coincide with the Cowardin et al. definition. Contact the Service's Regional Wetland Coordinator for additional information on what types of farmed wetlands are included on wetland maps.
Streams: Sierra Water Workgroup has produced this layer displaying flowlines of both streams and canals, within the Tahoe Sierra Integrated Regional Water Management Area. Data was provided by the National Hydrography Database, a collaborative entity between DWR and the US Bureau of Reclamation. From NHD: "The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee." Original metadata.Critical Aquatic Refuges: Sierra Water Workgroup has created this layer of critical aquatic ecosystem refuges. USDA-originated data was provided to SWWG by the ecological forecasting team Sierra Nevada DSS. From USDA FS: "This polygon layer consists of Critical Aquatic Reguges (CARs) found in the Sierra Nevada. This data was developed by the USDA Forest Service for use in the Sierra Nevada Fores Plan Amendment. Critical aquatic refuges provide habitat for native fish, amphibian and aquatic invertebrate populations." Original metadata.
HUC-12 Watersheds Boundaries: Sierra Water Work Group has modified this layer showing HUC-12 watershed boundaries outside the Tahoe-Sierra IRWM. Watershed Boundary data for this was provided by the USGS National Watershed Boundary Dataset (WBD). From USGS: “WBD provides a uniquely identified and uniform method of subdividing large drainage areas. The data is intended to be used as a tool for water-resource management and planning activities, particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The Watershed Boundary Dataset (WBD) defines the areal extent of surface water drainage to a point, accounting for all land and surface areas. Watershed Boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. The intent of defining Hydrologic Units (HU) for the Watershed Boundary Dataset is to establish a baseline drainage boundary framework, accounting for all land and surface areas. At a minimum, the WBD is being delineated and georeferenced to the USGS 1:24,000 scale topographic base map meeting National Map Accuracy Standards (NMAS). Hydrologic units are given a Hydrologic Unit Code (HUC). For example, a hydrologic region has a 2-digit HUC. A HUC describes where the unit is in the country and the level of the unit. The document "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" can be found here. ‘A hydrologic unit is a drainage area delineated to nest in a multi-level, hierarchical drainage system. Its boundaries are defined by hydrographic and topographic criteria that delineate an area of land upstream from a specific point on a river, stream or similar surface waters. A hydrologic unit can accept surface water directly from upstream drainage areas, and indirectly from associated surface areas such as remnant, non-contributing, and diversions to form a drainage area with single or multiple outlet points. Hydrologic units are only synonymous with classic watersheds when their boundaries include all the source area contributing surface water to a single defined outlet point.’” Original metadata.Private Water Districts: Sierra Water Workgroup has modified this layer of private water district boundaries in the Tahoe-Sierra Watershed Region. The Private Water District boundaries database is cooperatively shared between the U.S. Bureau of Reclamation (USBR), Mid-Pacific regional office (MP), MPGIS Service Center and the California Department of Water Resources (DWR). The USBR maintains this database with the voluntary assistance of the Private Water Districts. Original metadata. Montane Meadow Vegetation: The Sierra Water Workgroup modified this layer displaying meadow vegetation within the Tahoe Sierra Integrated Regional Water Management Boundaries. From USDA: "Data for this layer was developed by the USDA Forest Service for use in the Sierra Nevada Forest Plan Amendment Environmental Impact Statement. This layer depicts montane meadow vegetation on National Forests in the Sierra Nevada range. Meadows are wet and dry grassland types and short emergent meadow types maintained by man-made dams. Vegetation consists of a mixture of grasses, perennial herbs, rushes, and sedges. Woody vegetation is typically associated with riparian meadows. Riparian vegetation can be shrub or tree form, such as willow, alder, cottonwood, and aspen types. Meadow types are coded as wet or dry, with or without woody vegetation, or short emergent wetland. Meadow polygons are mapped to a minimum of 5 acres. California Vegetation (CALVEG) types within a meadow polygon are mapped to a minimum of 2.5 acres." Original Metadata.
Wells, Springs, Waterfalls, Gage Stations: Sierra Water Workgroup has modified this layer of hydrographic points within the Tahoe Sierra Integrated Regional Water Management Area. Data was provided by the National Hydrography Database, a collaborative entity between DWR and the US Bureau of Reclamation. From NHD: "The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
National Monuments Service - Archaeological Survey of Ireland. Published by Department of Housing, Local Government and Heritage. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).This Archaeological Survey of Ireland dataset is published from the database of the National Monuments Service Sites and Monuments Record (SMR). This dataset also can be viewed and interrogated through the online Historic Environment Viewer: https://heritagedata.maps.arcgis.com/apps/webappviewer/index.html?id=0c9eb9575b544081b0d296436d8f60f8
A Sites and Monuments Record (SMR) was issued for all counties in the State between 1984 and 1992. The SMR is a manual containing a numbered list of certain and possible monuments accompanied by 6-inch Ordnance Survey maps (at a reduced scale). The SMR formed the basis for issuing the Record of Monuments and Places (RMP) - the statutory list of recorded monuments established under Section 12 of the National Monuments (Amendment) Act 1994. The RMP was issued for each county between 1995 and 1998 in a similar format to the existing SMR. The RMP differs from the earlier lists in that, as defined in the Act, only monuments with known locations or places where there are believed to be monuments are included.
The large Archaeological Survey of Ireland archive and supporting database are managed by the National Monuments Service and the records are continually updated and supplemented as additional monuments are discovered. On the Historic Environment viewer an area around each monument has been shaded, the scale of which varies with the class of monument. This area does not define the extent of the monument, nor does it define a buffer area beyond which ground disturbance should not take place – it merely identifies an area of land within which it is expected that the monument will be located. It is not a constraint area for screening – such must be set by the relevant authority who requires screening for their own purposes. This data has been released for download as Open Data under the DPER Open Data Strategy and is licensed for re-use under the Creative Commons Attribution 4.0 International licence. http://creativecommons.org/licenses/by/4.0
Please note that the centre point of each record is not indicative of the geographic extent of the monument. The existing point centroids were digitised relative to the OSI 6-inch mapping and the move from this older IG-referenced series to the larger-scale ITM mapping will necessitate revisions. The accuracy of the derived ITM co-ordinates is limited to the OS 6-inch scale and errors may ensue should the user apply the co-ordinates to larger scale maps. Records that do not refer to 'monuments' are designated 'Redundant record' and are retained in the archive as they may relate to features that were once considered to be monuments but which on investigation proved otherwise. Redundant records may also refer to duplicate records or errors in the data structure of the Archaeological Survey of Ireland.
This dataset is provided for re-use in a number of ways and the technical options are outlined below. For a live and current view of the data, please use the web services or the data extract tool in the Historic Environment Viewer. The National Monuments Service also provide an Open Data snapshot of its national dataset in CSV as a bulk data download. Users should consult the National Monument Service website https://www.archaeology.ie/ for further information and guidance on the National Monument Act(s) and the legal significance of this dataset.
Open Data Bulk Data Downloads (version date: 23/08/2023)
The Sites and Monuments Record (SMR) is provided as a national download in Comma Separated Value (CSV) format. This format can be easily integrated into a number of software clients for re-use and analysis. The Longitude and Latitude coordinates are also provided to aid its re-use in web mapping systems, however, the ITM easting/northings coordinates should be quoted for official purposes. ERSI Shapefiles of the SMR points and SMRZone polygons are also available The SMRZones represent an area around each monument, the scale of which varies with the class of monument. This area does not define the extent of the monument, nor does it define a buffer area beyond which ground disturbance should not take place – it merely identifies an area of land within which it is expected that the monument will be located. It is not a constraint area for screening – such must be set by the relevant authority who requires screening for their own purposes.
GIS Web Service APIs (live views):
For users with access to GIS software please note that the Archaeological Survey of Ireland data is also available spatial data web services. By accessing and consuming the web service users are deemed to have accepted the Terms and Conditions. The web services are available at the URL endpoints advertised below:
SMR; https://services-eu1.arcgis.com/HyjXgkV6KGMSF3jt/arcgis/rest/services/SMROpenData/FeatureServer
SMRZone; https://services-eu1.arcgis.com/HyjXgkV6KGMSF3jt/arcgis/rest/services/SMRZoneOpenData/FeatureServer
Historic Environment Viewer - Query Tool
The "Query" tool can alternatively be used to selectively filter and download the data represented in the Historic Environment Viewer. The instructions for using this tool in the Historic Environment Viewer are detailed in the associated Help file: https://www.archaeology.ie/sites/default/files/media/pdf/HEV_UserGuide_v01.pdf...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This Archaeological Survey of Ireland dataset is published from the database of the National Monuments Service Sites and Monuments Record (SMR). This dataset also can be viewed and interrogated through the online Historic Environment Viewer. A Sites and Monuments Record (SMR) was issued for all counties in the State between 1984 and 1992. The SMR is a manual containing a numbered list of certain and possible monuments accompanied by 6-inch Ordnance Survey maps (at a reduced scale). The SMR formed the basis for issuing the Record of Monuments and Places (RMP) - the statutory list of recorded monuments established under Section 12 of the National Monuments (Amendment) Act 1994. The RMP was issued for each county between 1995 and 1998 in a similar format to the existing SMR. The RMP differs from the earlier lists in that, as defined in the Act, only monuments with known locations or places where there are believed to be monuments are included. The large Archaeological Survey of Ireland archive and supporting database are managed by the National Monuments Service and the records are continually updated and supplemented as additional monuments are discovered. On the Historic Environment viewer an area around each monument has been shaded, the scale of which varies with the class of monument. This area does not define the extent of the monument, nor does it define a buffer area beyond which ground disturbance should not take place – it merely identifies an area of land within which it is expected that the monument will be located. It is not a constraint area for screening – such must be set by the relevant authority who requires screening for their own purposes. This data has been released for download as Open Data under the DPER Open Data Strategy and is licensed for re-use under the Creative Commons Attribution 4.0 International licence. https://creativecommons.org/licenses/by/4.0/ Please note that the centre point of each record is not indicative of the geographic extent of the monument. The existing point centroids were digitised relative to the OSI 6-inch mapping and the move from this older IG-referenced series to the larger-scale ITM mapping will necessitate revisions. The accuracy of the derived ITM co-ordinates is limited to the OS 6-inch scale and errors may ensue should the user apply the co-ordinates to larger scale maps. Records that do not refer to 'monuments' are designated 'Redundant record' and are retained in the archive as they may relate to features that were once considered to be monuments but which on investigation proved otherwise. Redundant records may also refer to duplicate records or errors in the data structure of the Archaeological Survey of Ireland. This dataset is provided for re-use in a number of ways and the technical options are outlined below. For a live and current view of the data, please use the web services or the data extract tool in the Historic Environment Viewer. The National Monuments Service also provide an Open Data snapshot of its national dataset in CSV as a bulk data download. Users should consult the National Monument Service website https://www.archaeology.ie/ for further information and guidance on the National Monument Act(s) and the legal significance of this dataset. Open Data Bulk Data Downloads (version date: 23/06/2023) The Sites and Monuments Record (SMR) is provided as a national download in Comma Separated Value (CSV) format. This format can be easily integrated into a number of software clients for re-use and analysis. The Longitude and Latitude coordinates are also provided to aid its re-use in web mapping systems, however, the ITM easting/northings coordinates should be quoted for official purposes. For a live and current view of the data, please use the web services or the query tool in the Historic Environment Viewer. ESRI Shapefiles of the SMR points and SMRZone polygons are also available. The SMRZones represent an area around each monument, the scale of which varies with the class of monument. This area does not define the extent of the monument, nor does it define a buffer area beyond which ground disturbance should not take place – it merely identifies an area of land within which it is expected that the monument will be located. It is not a constraint area for screening – such must be set by the relevant authority who requires screening for their own purposes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Topographic databases normally contain areas of different land cover classes, commonly defining a planar partition, that is, gaps and overlaps are not allowed. When reducing the scale of such a database, some areas become too small for representation and need to be aggregated. This unintentionally but unavoidably results in changes of classes. In this article we present an optimisation method for the aggregation problem. This method aims to minimise changes of classes and to create compact shapes, subject to hard constraints ensuring aggregates of sufficient size for the target scale. To quantify class changes we apply a semantic distance measure. We give a graph theoretical problem formulation and prove that the problem is NP-hard, meaning that we cannot hope to find an efficient algorithm. Instead, we present a solution by mixed-integer programming that can be used to optimally solve small instances with existing optimisation software. In order to process large datasets, we introduce specialised heuristics that allow certain variables to be eliminated in advance and a problem instance to be decomposed into independent sub-instances. We tested our method for a dataset of the official German topographic database ATKIS with input scale 1:50,000 and output scale 1:250,000. For small instances, we compare results of this approach with optimal solutions that were obtained without heuristics. We compare results for large instances with those of an existing iterative algorithm and an alternative optimisation approach by simulated annealing. These tests allow us to conclude that, with the defined heuristics, our optimisation method yields high-quality results for large datasets in modest time.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This record is for Approval for Access product AfA196. This dataset identifies which second generation Shoreline Management Plan is applicable to a particular stretch of coastline. It also identifies the policies which are applicable. It is a polyline, spatial data layer. A Shoreline Management Plan (SMP) is a large-scale assessment of the risks associated with coastal processes and helps reduce these risks to people and the developed, historic and natural environments. Coastal processes include tidal patterns, wave height, wave direction and the movement of beach and seabed materials. The SMPs provide a ‘route map’ for local authorities and other decision makers to move from the present situation towards meeting our future needs, and will identify the most sustainable approaches to managing the risks to the coast in the short term (0-20 years), medium term (20-50 years) and long term (50-100 years). INFORMATION WARNING This dataset was created for the purposes of creating a strategic overview map; as a consequence it was created at a notional scale of 1:250,000, this means that the definition of the breakpoints and the accuracy to which the SMP lengths reflect the 'coastline' is suitable for strategic level use only. Consideration should be given as to whether it should be replaced by a more accurate representation. More detailed representations of the SMP boundaries may be available at Local/Regional level. Costing information is at a broad scale and indicative only. It not appropriate for any detailed costings work, or for identifying planned capital expenditure. This dataset contains hyperlinks to websites operated by other parties. We do not control such websites and we take no responsibility for, and will not incur any liability in respect of, their content. Our inclusion of hyperlinks to such websites does not imply any endorsement of views, statements or information contained in such websites.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract: In topographic maps, contour lines and elevation points usually represent the variation of height and slope. Contour lines interval defines the level of detail for relief representation. Geomorphological features we can identify on maps are related to contour lines generalization. In this study, we aim to define the necessary level of detail for the cartographic representation of relief features from the sandyzation process. The methodology comprises: defining the relief features associated with sandyzation at the study area by literature review; describing the aspects of data survey using Remotely Piloted Aircraft (RPA) to generate the orthophoto mosaic and the Digital Surface Model (DSM); and using the DSM to extract contour lines at different scales. We defined eight relief features (denudational landform, rill, ravine, micro-residual hill, dune, depositional fan, concentrated flow, and gully) for contour cartographic representation at 1:5,000, 1:1,000, 1:500, 1:200, and 1:100 scales. The results show the scales in which the relief features have their geomorphological characteristics better represented by contours lines. Since there is no reference for suitable scales for the cartographic representation of landforms related to the sandyzation process, this study can contribute to geomorphological researches in areas where this process occurs.
Since 2008, large-scale restoration programs have been implemented along the Willamette River, Oregon, to address historical losses of floodplain habitats for native fish. For much of the Willamette River floodplain, direct enhancement of floodplain habitats through restoration activities is needed because the underlying hydrologic, geomorphic, and vegetation processes that historically created and sustained complex floodplain habitats have been fundamentally altered by dam construction, bank protection, large wood removal, land conversion, and other influences (for example, Hulse and others, 2002; Wallick and others, 2013). For gravel-bed rivers like the Willamette River, planimetric changes (defined here as geomorphic changes related to horizontal adjustments independent of elevation and that can be observed using aerial photographs and other two-dimensional maps) include changes in channel position, gravel bars, and side channels. Restoration activities likely to cause planimetric changes in channel features include revetment removal, construction of off-channels features, modifications to floodplain topography, and gravel pit enhancements. Repeat planimetric mapping, provides a basis for quantifying channel changes and relating those changes to restoration projects or other natural or anthropogenic influences affecting geomorphic processes. Repeat mapping also can be used to quantify planimetric changes resulting directly from implementation of restoration projects, as well as subsequent geomorphic evolution of those features. In this study, repeat geomorphic mapping was completed for 2018 and 2020 along the lower 6.8 kilometers of the Middle Fork Willamette River (river mile 187.5 to 191.5 on USGS topographic maps) to support an assessment of geomorphic changes resulting from restoration activities implemented from 2014 to 2017. These datasets can be combined with previously published mapping (Keith and Gordon, 2019) in which the lower 11.6 km of Fall Creek and lower 27.3 km of Middle Fork Willamette were mapped for six periods (1936, 2005, 2011, 2012, 2014, and 2016). The 2018 and 2020 mapping was completed in the vicinity of large-scale restoration projects at the Willamette Confluence Preserve where gravel ponds and revetments were modified to improve floodplain habitats. The repeat mapping datasets include GIS layers defining the landforms and water features, as well as the types of cover and vegetation density on landforms, and types of secondary channel features mapped throughout the active channel. For this study, the active channel was defined as area typically inundated during annual high flows and includes the low-flow channel as well as side channels and gravel bars. Floodplain islands that have a substantial area surrounded by active channel features in the mapping were also included.
The United States is divided and sub-divided into successively smaller hydrologic units which are classified into four levels: regions, subregions, accounting units, and cataloging units. The hydrologic units are arranged or nested within each other, from the largest geographic area (regions) to the smallest geographic area (cataloging units). Each hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight digits based on the four levels of classification in the hydrologic unit system. The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.View Dataset on the Gateway
The United States is divided and sub-divided into successively smaller hydrologic units which are classified into four levels: regions, subregions, accounting units, and cataloging units. The hydrologic units are arranged or nested within each other, from the largest geographic area (regions) to the smallest geographic area (cataloging units). Each hydrologic unit is identified by a unique hydrologic unit code (HUC) consisting of two to eight digits based on the four levels of classification in the hydrologic unit system. The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. The Watershed Boundary Dataset (WBD) is a comprehensive aggregated collection of hydrologic unit data consistent with the national criteria for delineation and resolution. It defines the areal extent of surface water drainage to a point except in coastal or lake front areas where there could be multiple outlets as stated by the "Federal Standards and Procedures for the National Watershed Boundary Dataset (WBD)" "Standard" (http://pubs.usgs.gov/tm/11/a3/). Watershed boundaries are determined solely upon science-based hydrologic principles, not favoring any administrative boundaries or special projects, nor particular program or agency. This dataset represents the hydrologic unit boundaries to the 12-digit (6th level) for the entire United States. Some areas may also include additional subdivisions representing the 14- and 16-digit hydrologic unit (HU). At a minimum, the HUs are delineated at 1:24,000-scale in the conterminous United States, 1:25,000-scale in Hawaii, Pacific basin and the Caribbean, and 1:63,360-scale in Alaska, meeting the National Map Accuracy Standards (NMAS). Higher resolution boundaries are being developed where partners and data exist and will be incorporated back into the WBD. WBD data are delivered as a dataset of polygons and corresponding lines that define the boundary of the polygon. WBD polygon attributes include hydrologic unit codes (HUC), size (in the form of acres and square kilometers), name, downstream hydrologic unit code, type of watershed, non-contributing areas, and flow modifications. The HUC describes where the unit is in the country and the level of the unit. WBD line attributes contain the highest level of hydrologic unit for each boundary, line source information and flow modifications.View Dataset on the Gateway
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Seasonal and interannual variations in global wetland area is a strong driver of fluctuations in global methane (CH4) emissions. Current maps of global wetland extent vary with wetland definition, causing substantial disagreement and large uncertainty in estimates of wetland methane emissions. To reconcile these differences for large-scale wetland CH4 modeling, we developed a global Wetland Area and Dynamics for Methane Modeling (WAD2M) dataset at ~25 km resolution at equator (0.25 arc-degree) at monthly time-step for 2000-2018. WAD2M combines a time series of surface inundation based on active and passive microwave remote sensing at coarse resolution (~25 km) with six static datasets that discriminate inland waters, agriculture, shoreline, and non-inundated wetlands. We exclude all permanent water bodies (e.g. lakes, ponds, rivers, and reservoirs), coastal wetlands (e.g., mangroves and seagrasses), and rice paddies to only represent spatiotemporal patterns of inundated and non-inundated vegetated wetlands. Globally, WAD2M estimates the long-term maximum wetland area at 13.0 million km2 (Mkm2), which can be separated into three categories: mean annual minimum of inundated and non-inundated wetlands at 3.5 Mkm2, seasonally inundated wetlands at 4.0 Mkm2 (mean annual maximum minus mean annual minimum), and intermittently inundated wetlands at 5.5 Mkm2 (long-term maximum minus mean annual maximum). WAD2M has good spatial agreements with independent wetland inventories for major wetland complexes, i.e., the Amazon Lowland Basin and West Siberian Lowlands, with high Cohen’s kappa coefficient of 0.54 and 0.70 respectively among multiple wetlands products. By evaluating the temporal variation of WAD2M against modeled prognostic inundation (i.e., TOPMODEL) and satellite observations of inundation and soil moisture, we show that it adequately represents interannual variation as well as the effect of El Niño-Southern Oscillation on global wetland extent. This wetland extent dataset will improve estimates of wetland CH4 fluxes for global-scale land surface modeling.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
One of the largest hydraulic mines (1.6 km2) is located in California’s Sierra Nevada within the Humbug Creek watershed and Malakoff Diggins State Historic Park (MDSHP). MDSHP’s denuded and dissected landscape is composed of weathered Eocene auriferous sediments susceptible to chronic rill and gully erosion whereas block failures and debris flows occur in more cohesive terrain. This data release includes a 2014 digital elevation model (DEM), a study area boundary, and a geomorphic map. The 2014 DEM was derived from an available aerial LiDAR dataset collected in 2014 by the California Department of Conservation. The geomorphic map was derived for the study area from using a multi-scale spatial analysis. A topographic position index (TPI) was created using focal statistics to compare the elevations across the study area. We calculated a fine-scale TPI using a circular neighborhood with a radius of 25-meters and large-scale TPI using a circular neighborhood with a radius of 100-meters. In the resulting raster positive TPI values are assigned to cells with elevations higher than the surrounding area and negative TPI values are assigned to cells with elevations lower than the surrounding area. The geomorphic map was then created using a nested conditional statement to apply classification thresholds on the basis the fine and large-scale TPI rasters and a slope raster. Ten geomorphic feature classes were defined and the map can be symbolized by feature class. The geomorphic map includes both channel and hillslope features and can be used to assess erosional and depositional processes at the landscape scale.
Solar Footprints in CaliforniaThis GIS dataset consists of polygons that represent the footprints of solar powered electric generation facilities and related infrastructure in California called Solar Footprints. The location of solar footprints was identified using other existing solar footprint datasets from various sources along with imagery interpretation. CEC staff reviewed footprints identified with imagery and digitized polygons to match the visual extent of each facility. Previous datasets of existing solar footprints used to locate solar facilities include: GIS Layers: (1) California Solar Footprints, (2) UC Berkeley Solar Points, (3) Kruitwagen et al. 2021, (4) BLM Renewable Project Facilities, (5) Quarterly Fuel and Energy Report (QFER)Imagery Datasets: Esri World Imagery, USGS National Agriculture Imagery Program (NAIP), 2020 SENTINEL 2 Satellite Imagery, 2023Solar facilities with large footprints such as parking lot solar, large rooftop solar, and ground solar were included in the solar footprint dataset. Small scale solar (approximately less than 0.5 acre) and residential footprints were not included. No other data was used in the production of these shapes. Definitions for the solar facilities identified via imagery are subjective and described as follows: Rooftop Solar: Solar arrays located on rooftops of large buildings. Parking lot Solar: Solar panels on parking lots roughly larger than 1 acre, or clusters of solar panels in adjacent parking lots. Ground Solar: Solar panels located on ground roughly larger than 1 acre, or large clusters of smaller scale footprints. Once all footprints identified by the above criteria were digitized for all California counties, the features were visually classified into ground, parking and rooftop categories. The features were also classified into rural and urban types using the 42 U.S. Code § 1490 definition for rural. In addition, the distance to the closest substation and the percentile category of this distance (e.g. 0-25th percentile, 25th-50th percentile) was also calculated. The coverage provided by this data set should not be assumed to be a complete accounting of solar footprints in California. Rather, this dataset represents an attempt to improve upon existing solar feature datasets and to update the inventory of "large" solar footprints via imagery, especially in recent years since previous datasets were published. This procedure produced a total solar project footprint of 150,250 acres. Attempts to classify these footprints and isolate the large utility-scale projects from the smaller rooftop solar projects identified in the data set is difficult. The data was gathered based on imagery, and project information that could link multiple adjacent solar footprints under one larger project is not known. However, partitioning all solar footprints that are at least partly outside of the techno-economic exclusions and greater than 7 acres yields a total footprint size of 133,493 acres. These can be approximated as utility-scale footprints. Metadata: (1) CBI Solar FootprintsAbstract: Conservation Biology Institute (CBI) created this dataset of solar footprints in California after it was found that no such dataset was publicly available at the time (Dec 2015-Jan 2016). This dataset is used to help identify where current ground based, mostly utility scale, solar facilities are being constructed and will be used in a larger landscape intactness model to help guide future development of renewable energy projects. The process of digitizing these footprints first began by utilizing an excel file from the California Energy Commission with lat/long coordinates of some of the older and bigger locations. After projecting those points and locating the facilities utilizing NAIP 2014 imagery, the developed area around each facility was digitized. While interpreting imagery, there were some instances where a fenced perimeter was clearly seen and was slightly larger than the actual footprint. For those cases the footprint followed the fenced perimeter since it limits wildlife movement through the area. In other instances, it was clear that the top soil had been scraped of any vegetation, even outside of the primary facility footprint. These footprints included the areas that were scraped within the fencing since, especially in desert systems, it has been near permanently altered. Other sources that guided the search for solar facilities included the Energy Justice Map, developed by the Energy Justice Network which can be found here:https://www.energyjustice.net/map/searchobject.php?gsMapsize=large&giCurrentpageiFacilityid;=1&gsTable;=facility&gsSearchtype;=advancedThe Solar Energy Industries Association’s “Project Location Map” which can be found here: https://www.seia.org/map/majorprojectsmap.phpalso assisted in locating newer facilities along with the "Power Plants" shapefile, updated in December 16th, 2015, downloaded from the U.S. Energy Information Administration located here:https://www.eia.gov/maps/layer_info-m.cfmThere were some facilities that were stumbled upon while searching for others, most of these are smaller scale sites located near farm infrastructure. Other sites were located by contacting counties that had solar developments within the county. Still, others were located by sleuthing around for proposals and company websites that had images of the completed facility. These helped to locate the most recently developed sites and these sites were digitized based on landmarks such as ditches, trees, roads and other permanent structures.Metadata: (2) UC Berkeley Solar PointsUC Berkeley report containing point location for energy facilities across the United States.2022_utility-scale_solar_data_update.xlsm (live.com)Metadata: (3) Kruitwagen et al. 2021Abstract: Photovoltaic (PV) solar energy generating capacity has grown by 41 per cent per year since 2009. Energy system projections that mitigate climate change and aid universal energy access show a nearly ten-fold increase in PV solar energy generating capacity by 2040. Geospatial data describing the energy system are required to manage generation intermittency, mitigate climate change risks, and identify trade-offs with biodiversity, conservation and land protection priorities caused by the land-use and land-cover change necessary for PV deployment. Currently available inventories of solar generating capacity cannot fully address these needs. Here we provide a global inventory of commercial-, industrial- and utility-scale PV installations (that is, PV generating stations in excess of 10 kilowatts nameplate capacity) by using a longitudinal corpus of remote sensing imagery, machine learning and a large cloud computation infrastructure. We locate and verify 68,661 facilities, an increase of 432 per cent (in number of facilities) on previously available asset-level data. With the help of a hand-labelled test set, we estimate global installed generating capacity to be 423 gigawatts (−75/+77 gigawatts) at the end of 2018. Enrichment of our dataset with estimates of facility installation date, historic land-cover classification and proximity to vulnerable areas allows us to show that most of the PV solar energy facilities are sited on cropland, followed by arid lands and grassland. Our inventory could aid PV delivery aligned with the Sustainable Development GoalsEnergy Resource Land Use Planning - Kruitwagen_etal_Nature.pdf - All Documents (sharepoint.com)Metadata: (4) BLM Renewable ProjectTo identify renewable energy approved and pending lease areas on BLM administered lands. To provide information about solar and wind energy applications and completed projects within the State of California for analysis and display internally and externally. This feature class denotes "verified" renewable energy projects at the California State BLM Office, displayed in GIS. The term "Verified" refers to the GIS data being constructed at the California State Office, using the actual application/maps with legal descriptions obtained from the renewable energy company. https://www.blm.gov/wo/st/en/prog/energy/renewable_energy https://www.blm.gov/style/medialib/blm/wo/MINERALS_REALTY_AND_RESOURCE_PROTECTION_/energy/solar_and_wind.Par.70101.File.dat/Public%20Webinar%20Dec%203%202014%20-%20Solar%20and%20Wind%20Regulations.pdfBLM CA Renewable Energy Projects | BLM GBP Hub (arcgis.com)Metadata: (5) Quarterly Fuel and Energy Report (QFER) California Power Plants - Overview (arcgis.com)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Daily synoptic typing dataset for the southern Indian Ocean (30°-75°S, 40°-180° E) for the period January 1979 to October 2018 developed using self-organising maps (SOMs). The nine synoptic types represented by the nodes defined in this study included four meridional (SOM1, SOM2, SOM6 and SOM9), three mixed (SOM4, SOM7 and SOM8), a zonal (SOM3) and a transitional pattern (SOM5). Refer to Udy et al. Links between large scale modes of climate variability and synoptic weather patterns in the southern Indian Ocean. J.Climate in review.
Included datasets: SOM_daily_z500_anomaly_3_3.nc includes the composite z500 daily anomaly patterns for each of the 9 SOM nodes - lat, lon, z500 anomaly, node.
SOM_daily_z500_anomaly_3_3.txt includes the daily 'winning' node between 1st January 1979 and 31st October 2018. Each day is assigned to a 'winning' node between 1-9. e.g. 19790101 is assigned to SOM3.
SOM code: "Kohonen" Package in R https://cran.r-project.org/web/packages/kohonen/index.html
Study domain: 30°-75°S, 40°-180° E
Time step / period: daily / January 1979-October 2018
Input data: ERA-Interim (https://apps.ecmwf.int/datasets/) 500hPa geopotential height (z500) daily anomalies. Climate Data Operators (CDO) was used to calculate the daily anomaly (https://code.mpimet.mpg.de/projects/cdo/)
SOM algorithm parameters: refer to kohonen documentation for more information. dist.fcts (performance evaluation distance) = euclidean, grid = rect, neighbourhood function = gaussian, Nodes (number of SOM nodes) = 9, rlen (number of iterations) = 1000, alp (learning rate) = 0.05 to 0.01 and rad (radius) = 4 to 0.
In the Kohonen R-package, a radius value less than or equal to one corresponds to the point where only the 'winning' node is updated by each iteration, making the SOM algorithm similar to clustering techniques (e.g. k-means). The SOM algorithm used in this study was a hybrid between SOM/clustering (75% SOM, 25% clustering).
The Military Bases dataset was last updated on October 23, 2024 and are defined by Fiscal Year 2023 data, from the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The dataset depicts the authoritative locations of the most commonly known Department of Defense (DoD) sites, installations, ranges, and training areas world-wide. These sites encompass land which is federally owned or otherwise managed. This dataset was created from source data provided by the four Military Service Component headquarters and was compiled by the Defense Installation Spatial Data Infrastructure (DISDI) Program within the Office of the Assistant Secretary of Defense for Energy, Installations, and Environment. Only sites reported in the BSR or released in a map supplementing the Foreign Investment Risk Review Modernization Act of 2018 (FIRRMA) Real Estate Regulation (31 CFR Part 802) were considered for inclusion. This list does not necessarily represent a comprehensive collection of all Department of Defense facilities. For inventory purposes, installations are comprised of sites, where a site is defined as a specific geographic location of federally owned or managed land and is assigned to military installation. DoD installations are commonly referred to as a base, camp, post, station, yard, center, homeport facility for any ship, or other activity under the jurisdiction, custody, control of the DoD. While every attempt has been made to provide the best available data quality, this data set is intended for use at mapping scales between 1:50,000 and 1:3,000,000. For this reason, boundaries in this data set may not perfectly align with DoD site boundaries depicted in other federal data sources. Maps produced at a scale of 1:50,000 or smaller which otherwise comply with National Map Accuracy Standards, will remain compliant when this data is incorporated. Boundary data is most suitable for larger scale maps; point locations are better suited for mapping scales between 1:250,000 and 1:3,000,000. If a site is part of a Joint Base (effective/designated on 1 October, 2010) as established under the 2005 Base Realignment and Closure process, it is attributed with the name of the Joint Base. All sites comprising a Joint Base are also attributed to the responsible DoD Component, which is not necessarily the pre-2005 Component responsible for the site.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is a polygon data set depicting the current comprehensive planning areas for Boise City. A comprehensive planning area is defined in Chapter 4-1, page 171, of Blueprint Boise, the current Boise City Comprehensive Plan as, "On the largest scale, the entire area (area of impact) for which the City has authority to prepare comprehensive plans. On a smaller scale, planning area refers to the various sub-areas (i.e. West Bench, Central Bench, Southwest, etc,) which the City has defined as making up the larger planning area. These sub-areas are defined by physical barriers and/or the character of existing developments within them, and may each have specific planning objectives and policies articulated in the Comprehensive Plan." Each polygon in this data set is a specific smaller scale (sub-area) planning area. Collectively, the polygons represent the geography for the Boise City large scale comprehensive planning area.This data set is a critical component of the official Land Use Map within the Boise City Comprehensive Plan. It is used to identify specific areas within Boise City and the Boise Area of Impact to which specific land use designations and policies are applied. The data set is used to assist Boise City staff to identify specific planning areas and manage the growth of those areas to be consistent with the policies and intentions set out in the Boise City Comprehensive Plan.The dataset is generally coincident with the Boise Area of Impact; and is updated through City Council approval when the Boise Area of Impact changes. The data is current to the date the data set was published.For more information, please visit City of Boise Planning & Development.
Overview The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control. National Geospatial Data Asset This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee. Dataset Source Details Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground. Cartographic Visualization The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below. Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html Contact Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip Attribute Structure The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB. Core Attributes The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields. County Code and Country Name Fields “CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard. The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user. Descriptive Fields The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line. ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively. The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps. The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line. Use of Core Attributes in Cartographic Visualization Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between: International Boundaries (Rank 1); Other Lines of International Separation (Rank 2); and Special Lines (Rank 3). Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction. The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling. Use of the “CC1,” “CC1_GENC3,” “CC2,” “CC2_GENC3,” “RANK,” or “NOTES” fields for cartographic labeling purposes is prohibited. Extension Attributes Certain elements of the attributes within the LSIB dataset extend data functionality to make the data more interoperable or to provide clearer linkages to other datasets. The fields “CC1_GENC3” and “CC2_GENC” contain the corresponding three-character GENC code to the “CC1” and “CC2” attributes. The code “QX2” is the three-character counterpart of the code “Q2,” which denotes a line in the LSIB representing a boundary associated with a geographic area not contained within the GENC standard. To allow for linkage between individual lines in the LSIB and World Polygons dataset, the “CC1_WPID” and “CC2_WPID” fields contain a Universally Unique Identifier (UUID), version 4, which provides a stable description of each geographic entity in a boundary pair relationship. Each UUID corresponds to a geographic entity listed in the World Polygons dataset. These fields allow for linkage between individual lines in the LSIB and the overall World Polygons dataset. Five additional fields in the LSIB expand on the UUID concept and either describe features that have changed across space and time or indicate relationships between previous versions of the feature. The “LSIB_ID” attribute is a UUID value that defines a specific instance of a feature. Any change to the feature in a lineset requires a new “LSIB_ID.” The “ANTECIDS,” or antecedent ID, is a UUID that references line geometries from which a given line is descended in time. It is used when there is a feature that is entirely new, not when there is a new version of a previous feature. This is generally used to reference countries that have dissolved. The “PREVIDS,” or Previous ID, is a UUID field that contains old versions of a line. This is an additive field, that houses all Previous IDs. A new version of a feature is defined by any change to the