Facebook
TwitterIn 2023, New York led the ranking of the largest built-up urban areas worldwide, with a land area of ****** square kilometers. Boston-Providence and Tokyo-Yokohama were the second and third largest megacities globally that year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays urban land area (km²) by capital city using the aggregation sum in Western Africa. The data is about countries.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is a list of cities worldwide by population density. The population, population density and land area for the cities listed are based on the entire city proper, the defined boundary or border of a city or the city limits of the city. The population density of the cities listed is based on the average number of people living per square kilometer or per square mile. This list does not refer to the population, population density or land area of the greater metropolitan area or urban area, nor particular districts in any of the cities listed.
Facebook
TwitterThe largest city in Poland in terms of area was Gdańsk in 2024, with *** square kilometers. Followed by the capital, Warsaw, and Gdynia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays urban land area (km²) by capital city using the aggregation sum in Europe. The data is about countries per year.
Facebook
TwitterThis statistic provides the share of the total land area that is built-up in the ** largest cities around the world in 2015. As of this year, about ***** percent of Los Angeles' land area was considered built-up.
Facebook
TwitterThis statistic provides the land area that is built-up and non-built up in the ** largest cities worldwide in 2015. As of this year, about ******** square meters of Los Angeles is still considered non-built-up land mass.
Facebook
TwitterHamamatsu was the largest major city in Japan based on city area in 2024, with a size of close to **** thousand square kilometers. It was followed by Shizuoka, with a size of more than **** square kilometers. Overconcentration in Tokyo Economic, political, and financial activity in Japan is heavily concentrated in Tokyo. With around **** million inhabitants, the metropolitan area of Tokyo is the largest urban conglomeration in the world. Most of Japan’s largest companies have their headquarters in Tokyo, and the region attracts many young people who move there to study or work. A breakdown of the net migration flow in Japan showed that the prefectures of Tokyo, Kanagawa, Saitama, and Chiba, all part of the Tokyo metropolitan area, attract the largest number of people. In contrast, the majority of prefectures, especially those located in rural parts of the country, lose a substantial part of their population every year. Demographic trend in rural regions The overconcentration of economic activity in Tokyo has an impact on the demographic situation in rural parts of the country. Japan’s population is shrinking and aging, and rural regions are particularly affected by this. Many young people leave their rural hometowns to seek better opportunities in urban parts of Japan, leaving behind an aging population. As a result, many rural communities in Japan struggle with depopulation and a notable share of municipalities are even threatened with disappearance in the coming decades.
Facebook
Twitterhttp://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html
https://data.heatonresearch.com/images/wustl/kaggle/city-size/orbit-107.jpg" alt="Virtual City">
There are many different ways that engineers measure cities. What is the population? What is the total land area occupied by the city. In this exercise, we will see if you can create a model to predict the square feet contained in various virtual cities.
You are provided with images looking towards the city center. Each image is 512x512, compressed with JPEG. The following sample image shows a typical view of a virtual city. You can see towers of a variety of sizes and colors.
https://data.heatonresearch.com/images/wustl/kaggle/city-size/2.jpg" alt="Typical City View">
Not all views of the city will be the same. The following view looks at a city much closer up; however, results in some cropping of important detail.
https://data.heatonresearch.com/images/wustl/kaggle/city-size/10.jpg" alt="Up Close">
Some of the images will show you the city from somewhat above. Here you can see the city roads more clearly.
https://data.heatonresearch.com/images/wustl/kaggle/city-size/321.jpg" alt="Above the City">
Some cities are very small.
https://data.heatonresearch.com/images/wustl/kaggle/city-size/350.jpg" alt="Small City">
Other cities are larger.
https://data.heatonresearch.com/images/wustl/kaggle/city-size/947.jpg" alt="Large City">
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays land area (km²) by capital city using the aggregation sum in Caribbean. The data is about countries.
Facebook
TwitterNot many studies have documented climate and air quality changes of settlements at early stages of development. This is because high quality climate and air quality records are deficient for the periods of the early 18th century to mid 20th century when many U.S. cities were formed and grew. Dramatic landscape change induces substantial local climate change during the incipient stage of development. Rapid growth along the urban fringe in Phoenix, coupled with a fine-grained climate monitoring system, provide a unique opportunity to study the climate impacts of urban development as it unfolds. Generally, heat islands form, particularly at night, in proportion to city population size and morphological characteristics. Drier air is produced by replacement of the countryside's moist landscapes with dry, hot urbanized surfaces. Wind is increased due to turbulence induced by the built-up urban fabric and its morphology; although, depending on spatial densities of buildings on the land, wind may also decrease. Air quality conditions are worsened due to increased city emissions and surface disturbances. Depending on the diversity of microclimates in pre-existing rural landscapes and the land-use mosaic in cities, the introduction of settlements over time and space can increase or decrease the variety of microclimates within and near urban regions. These differences in microclimatic conditions can influence variations in health, ecological, architectural, economic, energy and water resources, and quality-of-life conditions in the city. Therefore, studying microclimatic conditions which change in the urban fringe over time and space is at the core of urban ecological goals as part of LTER aims. In analyzing Phoenix and Baltimore long-term rural/urban weather and climate stations, Brazel et al. (In progress) have discovered that long-term (i.e., 100 years) temperature changes do not correlate with populations changes in a linear manner, but rather in a third-order nonlinear response fashion. This nonlinear temporal change is consistent with the theories in boundary layer climatology that describe and explain the leading edge transition and energy balance theory. This pattern of urban vs. rural temperature response has been demonstrated in relation to spatial range of city sizes (using population data) for 305 rural vs. urban climate stations in the U.S. Our recent work on the two urban LTER sites has shown that a similar climate response pattern also occurs over time for climate stations that were initially located in rural locations have been overrun bu the urban fringe and subsequent urbanization (e.g., stations in Baltimore, Mesa, Phoenix, and Tempe). Lack of substantial numbers of weather and climate stations in cities has previously precluded small-scale analyses of geographic variations of urban climate, and the links to land-use change processes. With the advent of automated weather and climate station networks, remote-sensing technology, land-use history, and the focus on urban ecology, researchers can now analyze local climate responses as a function of the details of land-use change. Therefore, the basic research question of this study is: How does urban climate change over time and space at the place of maximum disturbance on the urban fringe? Hypotheses 1. Based on the leading edge theory of boundary layer climate change, largest changes should occur during the period of peak development of the land when land is being rapidly transformed from open desert and agriculture to residential, commercial, and industrial uses. 2. One would expect to observe, on average and on a temporal basis (several years), nonlinear temperature and humidity alterations across the station network at varying levels of urban development. 3. Based on past research on urban climate, one would expect to see in areas of the urban fringe, rapid changes in temperature (increases at night particularly), humidity (decreases in areas from agriculture to urban; increases from desert to urban), and wind speed (increases due to urban heating). 4. Changes of the surface climate on the urban fringe are expected to be altered as a function of various energy, moisture, and momentum control parameters, such as albedo, surface moisture, aerodynamic surface roughness, and thermal admittance. These parameters relate directly to population and land-use change (Lougeay et al. 1996).
Facebook
TwitterIn 2025, China's cities made up one-fourth of the global land area, consisting of built-up urban areas with populations of 500,000 and more. India's urban areas made up **** percent of the land area classified as large urban cities worldwide.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we produced the first 10 m resolution urban green space (UGS) map for the main urban clusters across 371 major Latin American cities as of 2017. Our approach applied a supervised classification of Sentinel-2 satellite imagery and UGS samples derived from OpenStreetMap (OSM). The overall accuracy of this UGS map in 11 randomly selected cities was 0.87, evaluated by independently collected validation samples (‘ground truth’). We further improved mapping quality through a visual inspection and additional sample collection. The resulting UGS map enables studies to measure area, spatial configuration, and human exposures to UGS, facilitating studies about the relationship between UGS and human exposures to environmental hazards, public health outcomes, and environmental justice issues in Latin American cities.UGS in this map series includes grass, shrub, forest, and farmland, and non-UGS included buildings, pavement, roads, barren land, and dry vegetation.The UGS map series includes three sets of files:(1) binary UGS maps at 10 m spatial resolution in GEOTIFF format (UGS.zip), with each of the 371 cities being an individual map. Mapped value of 1 indicates UGS, 0 indicates non-UGS, and no data (with value of -32768) indicates areas outside the mapped boundary or water bodies;(2) a shapefile of mapped boundaries (Boundaries.zip). The boundary file contains city name, country name and its ISO-2 country code, and an ID field linking each city's boundary to the corresponding UGS map.(3) .prj files containing projection information for the binary UGS maps and boundary shapefile. The binary UGS maps are projected with World Geodetic System (WGS) 84 / Pseudo-Mercator projected coordinate system (EPSG: 3857), and the boundary shapefile is projected with WGS 1984 geographic coordinate system (EPSG: 4326)Reference: A 10 m resolution urban green space map for major Latin American cities from Sentinel-2 remote sensing images and OpenStreetMap, published by Scientific Data [link].Citation: Ju, Y., Dronova, I., & Delclòs-Alió, X. (2022). A 10 m resolution urban green space map for major Latin American cities from Sentinel-2 remote sensing images and OpenStreetMap. Scientific Data, 9, Article 1. https://doi.org/10.1038/s41597-022-01701-y
Facebook
TwitterThis dataset contains information on all United States of America counties.
I have scraped this data from the following Wikipedia website: https://en.wikipedia.org/wiki/List_of_United_States_counties_and_county_equivalents
Data scientists spend most of their time on data cleaning. Hence, this dataset can be ideal for sharpening your data-cleaning skills.
Columns specification: county: Name of each county. state: State name. founded: The year when it was founded. largest_city: Name of the largest city. pop_total: Population in total on that state. pop_den: Population density per square mile and km square. total_area: Total area(land + water) on mile square and km square. land_area: Total land area in mile square and km square. water_area: Total water area on mile square and km square.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This horizontal bar chart displays land area (km²) by capital city using the aggregation sum in Korea. The data is about countries per year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
Key Features
Country: Name of the country.
Density (P/Km2): Population density measured in persons per square kilometer.
Abbreviation: Abbreviation or code representing the country.
Agricultural Land (%): Percentage of land area used for agricultural purposes.
Land Area (Km2): Total land area of the country in square kilometers.
Armed Forces Size: Size of the armed forces in the country.
Birth Rate: Number of births per 1,000 population per year.
Calling Code: International calling code for the country.
Capital/Major City: Name of the capital or major city.
CO2 Emissions: Carbon dioxide emissions in tons.
CPI: Consumer Price Index, a measure of inflation and purchasing power.
CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
Currency_Code: Currency code used in the country.
Fertility Rate: Average number of children born to a woman during her lifetime.
Forested Area (%): Percentage of land area covered by forests.
Gasoline_Price: Price of gasoline per liter in local currency.
GDP: Gross Domestic Product, the total value of goods and services produced in the country.
Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
Largest City: Name of the country's largest city.
Life Expectancy: Average number of years a newborn is expected to live.
Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
Minimum Wage: Minimum wage level in local currency.
Official Language: Official language(s) spoken in the country.
Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
Physicians per Thousand: Number of physicians per thousand people.
Population: Total population of the country.
Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
Tax Revenue (%): Tax revenue as a percentage of GDP.
Total Tax Rate: Overall tax burden as a percentage of commercial profits.
Unemployment Rate: Percentage of the labor force that is unemployed.
Urban Population: Percentage of the population living in urban areas.
Latitude: Latitude coordinate of the country's location.
Longitude: Longitude coordinate of the country's location.
Potential Use Cases
Analyze population density and land area to study spatial distribution patterns.
Investigate the relationship between agricultural land and food security.
Examine carbon dioxide emissions and their impact on climate change.
Explore correlations between economic indicators such as GDP and various socio-economic factors.
Investigate educational enrollment rates and their implications for human capital development.
Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
Study labor market dynamics through indicators such as labor force participation and unemployment rates.
Investigate the role of taxation and its impact on economic development.
Explore urbanization trends and their social and environmental consequences.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent advances in quantitative tools for examining urban morphology enable the development of morphometrics that can characterize the size, shape, and placement of buildings; the relationships between them; and their association with broader patterns of development. Although these methods have the potential to provide substantial insight into the ways in which neighborhood morphology shapes the socioeconomic and demographic characteristics of neighborhoods and communities, this question is largely unexplored. Using building footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los Angeles) and the open-source R package, foot, we examine how neighborhood morphology differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal components analysis, unsupervised classification (K-means), and Ordinary Least Squares regression analysis are used to develop a morphological typology of neighborhoods and to examine its association with the spatial, socioeconomic, and demographic characteristics of census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, both across the five metropolitan areas as well as between central cities, suburbs, and the urban fringe within each metropolitan area. We identify five different types of neighborhoods indicative of different stages of development and distributed unevenly across the urban landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-density residential areas in central cities; and uniform residential neighborhoods in suburban cities. Results from regression analysis illustrate that the prevalence of each of these forms is closely associated with variation in socioeconomic and demographic characteristics such as population density, the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by discussing the implications of our findings and suggesting avenues for future research on neighborhood morphology, including ways that it might provide insight into issues such as zoning and land use, housing policy, and residential segregation.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This layer contains information for locating past and present legal city boundaries within Los Angeles County. The Los Angeles County Department of Public Works provides the most current shapefiles representing city annexations and city boundaries on the Los Angeles County GIS Data Portal. The Department also provides large format city annexation maps (pdf) on its FTP site. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California. Numerous records are freely available at the Land Records Information website, hosted by the Department of Public Works.Principal attributes include:NO: corresponds with numbers on the tables displayed on City Annexation Maps.ANNEX_No: is a text version of the "NO" field listed above. Because this field is only used for the Long Beach and Los Angeles Annexation Maps, this value is null for all other cities.NAME: is the official name under which the annexation was filed.TYPE: is used to indicate which legal action occurred.A - represents an Annexation to that city.D - represents a Detachment from that city.V - is used to indicate the annexation was rendered Void or withdrawn before an effective date could be declared.33 - Some older city annexation maps indicate a city boundary declared 'as of February 8, 1933'.ANNEX_AREA: is the land area annexed or detached, in square miles, per the recorded legal description.TOTAL_AREA:is the cumulative total land area for each city, arranged chronologically.SHADE: is used by some of our cartographers to store the color used on printed maps.INDEXNO: is a matching field used for retriving documents from our department's document management system.STATE (Secretary of State): Date filed with the Secretary of State.COUNTY (County Recorder): Date filed with the County Recorder.EFFECTIVE (Effective Date):The effective date of the annexation or detachment.CITY: The city to which the annexation or detachment took place.FEAT_TYPE: contains the type of feature each polygon represents:Land - Use this value for your definition query if you want to see only land features on your map.Water - Polygons with this attribute value represent internal navigable waters. Examples of internal waters are found in the Long Beach Harbor.3NM Buffer - Per the Submerged Lands Act, the seaward boundaries of coastal cities and unincorporated county areas are three nautical miles (a nautical mile is 1852 meters) from the coastline.
Facebook
TwitterThe Low Elevation Coastal Zone (LECZ) Urban-Rural Population Estimates consists of country-level estimates of urban, rural and total population and land area country-wide and in the LECZ, if applicable. Additionally, the data set provides the number of urban extents, their population and land area that intersect the LECZ, by city-size population classifications of less than 100,000, 100,000 to 500,000, 500,000 to 1,000,000, 1,000,000 to 5,000,000, and more than 5,000,000. All estimates are based on GRUMP Alpha data products. The LECZ was generated using SRTM Digital Elevation Model data and includes all land area that is contiguous with the coast and 10 meters or less in elevation. All grids used for population, land area, urban mask, and LECZ were of 30 arc-second (~1 km ) resolution. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Institute for Environment and Development (IIED). To provide estimates of urban and rural populations and land areas in the low elevation coastal zone.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 16 cities in the Nome Census Area, AK by Asian population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Facebook
TwitterIn 2023, New York led the ranking of the largest built-up urban areas worldwide, with a land area of ****** square kilometers. Boston-Providence and Tokyo-Yokohama were the second and third largest megacities globally that year.