Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Southeast Fairbanks Census Area, AK by Multi-Racial White population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Southeast Fairbanks Census Area, AK by Multi-Racial Native Hawaiian and Other Pacific Islander (NHPI) population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
https://www.virginia-demographics.com/terms_and_conditionshttps://www.virginia-demographics.com/terms_and_conditions
A dataset listing Virginia cities by population for 2024.
It is estimated that the cities of Cordova (modern-day Córdoba) and Palermo were the largest cities in Europe in 1050, and had between fifteen and twenty times the population of most other entries in this graph, Despite this the cities of Cordova (the capital city of the Umayyad caliphate, who controlled much of the Iberian peninsula from the seventh to eleventh centuries), and Palermo (another Arab-controlled capital in Southern Europe) were still the only cities in Western Europe with a population over one hundred thousand people, closely followed by Seville. It is also noteworthy to point out that the five largest cities on this list were importing trading cities, in modern day Spain or Italy, although the largest cities become more northern and western European in later lists (1200, 1330, 1500, 1650 and 1800). In 1050, todays largest Western European cities, London and Paris, had just twenty-five and twenty thousand inhabitants respectively.
The period of European history (and much of world history) between 500 and 1500 is today known as the 'Dark Ages'. Although the term 'Dark Ages' was originally applied to the lack of literature and arts, it has since been applied to the lack or scarcity of recorded information from this time. Because of these limitations, much information about this time is still being debated today.
The statistic depicts the ten largest cities in Mexico in 2020. In 2020, Mexico City had around 8.84 million residents which made it the largest city in Mexico.
Population of Mexico
Mexico is a federal republic located in North America, sharing borders with the United States to the north, and to the southeast with Guatemala and Belize. With a total area of over 1.9 million square kilometers, it is the fourteenth largest nation in the world and the fifth largest in the Americas.
In 2014, Mexico’s total population amounted to approximately 120 million people. A little under two thirds of Mexico’s total population is of Mestizo ethnicity. The total population has steadily grown over the past decade, despite being the source to the largest migration flow between countries in the world; in 2010, around 11.6 million immigrants from Mexico lived in the United States. The migration flow between the United States and Mexico has however, decreased over the past ten years: Between 1995 and 2000, over 2.9 million migrants emigrated from Mexico to the United States. This was more than the double of migrants who emigrated from Mexico to the United States between 2005 and 2010. Each year, Mexico's population grows by about 1.24 percent compared to the previous year. Mexico City, the country’s capital and largest city, is home to approximately 8.6 million people.
https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions
A dataset listing Maine cities by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Based on the land economic density of 892 town units, the spatial pattern of the land economic density in Zhejiang Province is analyzed using the coefficient of variation, spatial classification, and spatial correlation methods, and the influencing factors are analyzed using a spatial regression model. The results are as follows: (1) The coefficients of variation were 2.6 and 3.1 in 2014 and 2019, respectively, indicating that the degree of imbalance of the town’s industrial economy at the county level increased. (2) The distribution of the high-level agglomeration areas was characterized by one core area and two sub-core areas. The main core area was located at the junction of Hangzhou City, Shaoxing City, and Jiaxing City, and the two sub-core areas were located in Yuyao City and the main urban area of Ningbo City. In addition, several small-scale agglomeration areas composed of medium and high-level units were distributed in Wenzhou City. (3) The high-value agglomeration and low-value agglomeration distribution in the spatial correlation patterns was identified using the spatial auto-correlation method. The hot spots and sub-hot spots were distributed in Northern Zhejiang, and the cold spots formed a large-scale agglomeration in Quzhou City, Lishui City, Taizhou City, and several other cities in Southern Zhejiang. (4) Compared with the county scale, the spatial scope of the high-level areas in Northern Zhejiang shrunk significantly at the township scale, and the high-level agglomeration areas along the southeast coast changed into a cluster of several townships. (5) According to the geographically weighted regression (GWR) model, the importance of influencing factors is as follows: population density > regional area > industrial output value per capita > total population > proportion of secondary and tertiary personnel > total employees.
https://www.idaho-demographics.com/terms_and_conditionshttps://www.idaho-demographics.com/terms_and_conditions
A dataset listing Idaho cities by population for 2024.
https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions
A dataset listing Washington cities by population for 2024.
The largest city in Finland is Helsinki with 684,018 inhabitants. Helsinki is the capital of Finland, and it is located in the south within the Uusimaa region. In 2024, the second largest city was Espoo, a city located in the Greater Helsinki metropolitan area, which had approximately 320,900 inhabitants. After the cities of Helsinki and Espoo, the third largest and most populous city outside the capital region was Tampere, with roughly 280,200 inhabitants. The Finnish population is highly concentrated in southern Finland The total population of Finland is roughly 5.64 million. Finland is one of the most sparsely populated countries in Europe, and the population is highly concentrated in the southern and southwestern parts of the country. Since 1915 the population of Finland grew steadily from 3.1 million to more than 5.64 million inhabitants. But the upwards trend slowed down in recent years. The median age of the Finnish population is rising While the population growth slowed down the Finnish population also got older. The media age increased from 38.4 years in 2000 to 43 years in 2024. The estimated median age for the Finnish population in 2035 was 45.3 years.
https://www.utah-demographics.com/terms_and_conditionshttps://www.utah-demographics.com/terms_and_conditions
A dataset listing Utah cities by population for 2024.
In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.
China is a vast and diverse country and population density in different regions varies greatly. In 2023, the estimated population density of the administrative area of Shanghai municipality reached about 3,922 inhabitants per square kilometer, whereas statistically only around three people were living on one square kilometer in Tibet. Population distribution in China China's population is unevenly distributed across the country: while most people are living in the southeastern half of the country, the northwestern half – which includes the provinces and autonomous regions of Tibet, Xinjiang, Qinghai, Gansu, and Inner Mongolia – is only sparsely populated. Even the inhabitants of a single province might be unequally distributed within its borders. This is significantly influenced by the geography of each region, and is especially the case in the Guangdong, Fujian, or Sichuan provinces due to their mountain ranges. The Chinese provinces with the largest absolute population size are Guangdong in the south, Shandong in the east and Henan in Central China. Urbanization and city population Urbanization is one of the main factors which have been reshaping China over the last four decades. However, when comparing the size of cities and urban population density, one has to bear in mind that data often refers to the administrative area of cities or urban units, which might be much larger than the contiguous built-up area of that city. The administrative area of Beijing municipality, for example, includes large rural districts, where only around 200 inhabitants are living per square kilometer on average, while roughly 20,000 residents per square kilometer are living in the two central city districts. This is the main reason for the huge difference in population density between the four Chinese municipalities Beijing, Tianjin, Shanghai, and Chongqing shown in many population statistics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
List of factors influencing the land economic density.
The COVID-19 pandemic is first and foremost a health shock, but the secondary economic shock is equally formidable. Access to timely, policy-relevant information on the awareness of, responses to and impacts of the health situation and related restrictions are critical to effectively design, target and evaluate programme and policy interventions. This research project investigates the main socioeconomic impacts of the pandemic on UNHCR people of concern (PoC) – and nationals where possible – in terms of access to information, services and livelihoods opportunities. Three geographic regions were taken into consideration: Southern Mexico, Mexico City and the Northern and Central Industrial Corridor. Two rounds of data collection took place for this survey, with the purpose of following up with the respondents.
Southern Mexico, Mexico City, Northern and Central Mexico
Household
Sample survey data [ssd]
The ProGres database served as the sampling frame due to the unavailability of other reliable sources. Likewise, the sample was stratified by location and population groups based on country of origin helping to account for the different economic realities from one part of the country to another, as well as differences between nationalities. Following discussion with the UNHCR country team and regional bureau, three geographic regions were presented for consideration : a) Southern Mexico; b) Mexico City; and c) the Northern and Central Industrial Corridor. Additionally, partners expressed interest in the Venezuelan community as a separate group, primarily residing in Mexico City, Monterrey and Cancun. The population of the four groups represents 67% of the active registered refugees in Mexico. Out of the 35,140 refugee households in the four regions, 26,688 families have at least one phone number representing an overall high rate of phone penetration. Across regions of interest, Hondurans make up the single largest group of PoC in Southern Mexico (38%), and the Northern and Central Industrial Corridor (43%), whereas Venezuelans make up over half of the PoC population in Mexico City (52%). Based on the above, a sampling strategy based on four separate strata was proposed in order to adequately represent the regions and sub-groups of interest: 1. Southern Mexico – Honduran and El Salvadoran PoC population 2. Mexico City – Honduran, El Salvadoran and Cuban PoC population 3. Northern and Central Industrial Corridor – Hondurans and El Salvadoran PoC population 4. Venezuelan Population – Mexico City, Monterey (Nuevo Leon) and Cancun (Quintana Roo) A comparable sub-sample of the national population in the same locations PoC were sampled was also generated using random digit dialing (RDD). This was made possible through the inclusion of location-based area codes in the list of phone numbers, however selected participants were also asked about their current location as a first filter to proceed with the phone survey to ensure a comparable national sub-sample.
Computer Assisted Telephone Interview [cati]
Questionnaire contained the following sections: consent, knowledge, behaviour, access, employment, income, food security, concerns, resilience, networks, demographics
In 2025, the Ile-de-France region, sometimes called the Paris region, was the most populous in France. It is located in the northern part of France, divided into eight departments and crossed by the Seine River. The region contains Paris, its large suburbs, and several rural areas. The total population in metropolitan France was estimated at around 65 million inhabitants. In the DOM (Overseas Department), France had more than two million citizens spread over the islands of Guadeloupe, Martinique, Reunion, Mayotte, and the South American territory of French Guiana. Ile-de-France: most populous region in France According to the source, more than ** million French citizens lived in the Ile-de-France region. Ile-de-France was followed by Auvergne-Rhône-Alpes and Occitanie region which is in the Southern part of the country. Ile-de-France is not only the most populated region in France, it is also the French region with the highest population density. In 2020, there were ******* residents per square kilometer in Ile-de-France compared to ***** for Auvergne-Rhône-Alpes, the second most populated region in France. More than two million people were living in the city of Paris in 2025. Thus, the metropolitan area outside the city of Paris, called the suburbs or banlieue in French, had more than ten million inhabitants. Ile-de-France concentrates the majority of the country’s economic and political activities. An urban population In 2024, the total population of France amounted to over 68 million. The population in the country has increased since the mid-2000s. As well as the other European countries, France is experiencing urbanization. In 2023, more than ** percent of the French population lived in cities. This phenomenon shapes France’s geography.
The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city
https://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
50 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2050.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents. Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley. How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life? Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This upload contains two Geopackage files of raw data used for urban analysis in the outskirts of Lille and Nice, France.
The data include building footprints (layer "building"), roads (layer "road"), and administrative boundaries (layer "adm_boundaries")
extracted from version 3.3 of the French dataset BD TOPO®3 (IGN, 2023) for the municipalities of Santes, Hallennes-lez-Haubourdin,
Haubourdin, and Emmerin in northern France (Geopackage "DPC_59.gpkg") and Drap, Cantaron and La Trinité in southern France
(Geopackage "DPC_06.gpkg").
Metadata for these layers is available here: https://geoservices.ign.fr/sites/default/files/2023-01/DC_BDTOPO_3-3.pdf
Additionally, this upload contains the results of the following algorithms available in GitHub (https://github.com/perezjoan/emc2-WP2?tab=readme-ov-file)
1. Theidentification
of
main
streets using the QGIS plugin Morpheo (layers "road_morpheo" and "buffer_morpheo")
https://plugins.qgis.org/plugins/morpheo/
2.
Theidentification of main streets in local contexts – connectivity locally weighted
(layer "road_LocRelCon")
3.
Basic morphometryof
buildings
(layer "building_morpho")
4.
Evaluationof
the
number
of
dwellings
within
inhabited
buildings
(layer "building_dwellings")
5. Projectingpopulation
potential
accessible from
main
streets
(layer "road_pop_results")
Project website: http://emc2-dut.org/
Publications using this sample data:
Perez, J. and Fusco, G., 2024. Potential of the 15-Minute Peripheral City: Identifying Main Streets and Population Within Walking Distance. In: O. Gervasi, B. Murgante, C. Garau, D. Taniar, A.M.A.C. Rocha and M.N. Faginas Lago, eds. Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14817. Cham: Springer, pp.50-60. https://doi.org/10.1007/978-3-031-65238-7_4.
Acknowledgement. This work is part of the emc2 project, which received the grant ANR-23-DUTP-0003-01 from the French National Research Agency (ANR) within the DUT Partnership.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 2 cities in the Southeast Fairbanks Census Area, AK by Multi-Racial White population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.