https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.
This statistic shows the biggest cities in Georgia in 2020. In 2020, approximately 1.15 million people lived in Tbilisi, making it the biggest city in Georgia.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in largest city in Georgia was reported at 1084471 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. Georgia - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Georgia GE: Population in Largest City data was reported at 1,077,597.000 Person in 2017. This records a decrease from the previous number of 1,077,861.000 Person for 2016. Georgia GE: Population in Largest City data is updated yearly, averaging 1,079,842.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,236,979.000 Person in 1989 and a record low of 717,766.000 Person in 1960. Georgia GE: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Georgia – Table GE.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
This list ranks the 525 cities in the Georgia by Non-Hispanic Black or African American population, as estimated by the United States Census Bureau. It also highlights population changes in each cities over the past five years.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in the largest city (% of urban population) in Georgia was reported at 47.72 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. Georgia - Population in the largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Georgia GE: Population in Largest City: as % of Urban Population data was reported at 49.785 % in 2017. This records a decrease from the previous number of 50.107 % for 2016. Georgia GE: Population in Largest City: as % of Urban Population data is updated yearly, averaging 46.528 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 50.703 % in 2014 and a record low of 44.429 % in 1993. Georgia GE: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Georgia – Table GE.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia counties by population for 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Iron City by race. It includes the population of Iron City across racial categories (excluding ethnicity) as identified by the Census Bureau. The dataset can be utilized to understand the population distribution of Iron City across relevant racial categories.
Key observations
The percent distribution of Iron City population by race (across all racial categories recognized by the U.S. Census Bureau): 77.44% are white, 20.26% are Black or African American, 0.77% are Asian, 0.51% are some other race and 1.03% are multiracial.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Iron City Population by Race & Ethnicity. You can refer the same here
The share of urban population in Georgia saw no significant changes in 2023 in comparison to the previous year 2022 and remained at around 60.73 percent. Still, the share reached its highest value in the observed period in 2023. A country's urbanization rate refers to the share of the total population living in an urban setting. International comparisons of urbanization rates may be inconsistent, due to discrepancies between definitions of what constitutes an urban center (based on population size, area, or space between dwellings, among others).Find more key insights for the share of urban population in countries like Armenia and Azerbaijan.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Iron City by race. It includes the distribution of the Non-Hispanic population of Iron City across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Iron City across relevant racial categories.
Key observations
Of the Non-Hispanic population in Iron City, the largest racial group is White alone with a population of 297 (77.55% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Iron City Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Iron City Hispanic or Latino population. It includes the distribution of the Hispanic or Latino population, of Iron City, by their ancestries, as identified by the Census Bureau. The dataset can be utilized to understand the origin of the Hispanic or Latino population of Iron City.
Key observations
Among the Hispanic population in Iron City, regardless of the race, the largest group is of Mexican origin, with a population of 7 (100% of the total Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Origin for Hispanic or Latino population include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Iron City Population by Race & Ethnicity. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Non-Hispanic population of Atlanta by race. It includes the distribution of the Non-Hispanic population of Atlanta across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of Atlanta across relevant racial categories.
Key observations
Of the Non-Hispanic population in Atlanta, the largest racial group is Black or African American alone with a population of 231,361 (49.43% of the total Non-Hispanic population).
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Racial categories include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Atlanta Population by Race & Ethnicity. You can refer the same here
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The 2015 TIGER Geodatabases are extracts of selected nation based and state based geographic and cartographic information from the U.S. Census Bureau's Master Address File/Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) database. The geodatabases include feature class layers of information for the fifty states, the District of Columbia, Puerto Rico, and the Island areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the United States Virgin Islands). The geodatabases do not contain any sensitive data. The 2015 TIGER Geodatabases are designed for use with Esriâ s ArcGIS.
The 2015 State Geodatabase for Georgia contains multiple layers. These layers are the Block, Block Group, Census Designated Place, Census Tract,
County Subdivision and Incorporated Place layers.
Block Groups (BGs) are clusters of blocks within the same census tract. Each census tract contains at least one BG, and BGs are uniquely numbered
within census tracts. BGs have a valid code range of 0 through 9. BGs have the same first digit of their 4-digit census block number from the same
decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within BG 3 within that
census tract. BGs coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and
Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A BG usually covers a contiguous area but never crosses
county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban
areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas.
The BG boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the
2010 Census.
The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to
previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people.
When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living
conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by
highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to
population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable
features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to
allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and
county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may
consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities
that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that
include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American
Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little
or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial
park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD),
which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state,
but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have
other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated
to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state
in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide
with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial
census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily
have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population.
The boundaries of most incorporated places in this shapefile are as of January 1, 2013, as reported through the Census Bureau's Boundary and
Annexation Survey (BAS). Limited updates that occurred after January 1, 2013, such as newly incorporated places, are also included. The boundaries
of all CDPs were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2010 Census.
The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no
counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The
latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri,
Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary
divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data
presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data
presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto
Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin
Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.
The boundaries for counties and equivalent entities are mostly as of January 1, 2013, primarily as reported through the Census Bureau's Boundary and
Annexation Survey (BAS). However, some changes made after January 2013, including the addition and deletion of counties, are included.
County subdivisions are the primary divisions of counties and their equivalent entities for the reporting of Census Bureau data. They include
legally-recognized minor civil divisions (MCDs) and statistical census county divisions (CCDs), and unorganized territories. For the 2010 Census,
the MCDs are the primary governmental and/or administrative divisions of counties in 29 States and Puerto Rico; Tennessee changed from having CCDs
for Census 2000 to having MCDs for the 2010 Census. In MCD States where no MCD exists or is not defined, the Census Bureau creates statistical
unorganized territories to complete coverage. The entire area of the United States, Puerto Rico, and the Island Areas are covered by county
subdivisions. The boundaries of most legal MCDs are as of January 1, 2013, as reported through the Census Bureau's Boundary and Annexation Survey
(BAS).
The boundaries of all CCDs, delineated in 21 states, are those as reported as part of the Census Bureau's Participant Statistical Areas Program
(PSAP) for the 2010 Census.
In 2023, the real gross domestic product (GDP) of the Atlanta metropolitan area amounted to ****** billion U.S. dollars. The Atlanta metropolitan area, or metro Atlanta, officially designated by as the Atlanta-Sandy Springs-Alpharetta Metropolitan Statistical Area, is the most populous metro area in the U.S. state of Georgia and the ninth-largest metropolitan statistical area (MSA) in the United States. In addition to Atlanta, Georgia's capital and largest city, the Atlanta metropolitan area spans up to ** counties in north Georgia and had a total estimated population in 2021 of *** million.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer was developed by the Research & Analytics Group of the Atlanta Regional Commission, using data from the U.S. Census Bureau’s American Community Survey 5-year estimates for 2013-2017, to show household size, type, and composition data by Atlanta City Council Districts in the Atlanta region.
The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent.
The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2013-2017). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available.
For further explanation of ACS estimates and margin of error, visit Census ACS website.
Naming conventions:
Prefixes:
None
Count
p
Percent
r
Rate
m
Median
a
Mean (average)
t
Aggregate (total)
ch
Change in absolute terms (value in t2 - value in t1)
pch
Percent change ((value in t2 - value in t1) / value in t1)
chp
Change in percent (percent in t2 - percent in t1)
Suffixes:
None
Change over two periods
_e
Estimate from most recent ACS
_m
Margin of Error from most recent ACS
_00
Decennial 2000
Attributes:
Attributes and definitions available below under "Attributes" section and in Infrastructure Manifest (due to text box constraints, attributes cannot be displayed here).
Source: U.S. Census Bureau, Atlanta Regional Commission
Date: 2013-2017
For additional information, please visit the Census ACS website.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://www.georgia-demographics.com/terms_and_conditionshttps://www.georgia-demographics.com/terms_and_conditions
A dataset listing Georgia cities by population for 2024.